Application and evaluation of the alamarblue assay for cell growth and survival of fibroblasts

  • Sherry L. Voytik-Harbin
  • Andrew O. Brightman
  • Beverly Waisner
  • Carlton H. Lamar
  • Stephen F. Badylak
Growth, Differentiation And Senescence


Cell proliferation assays are essential to developing an understanding of the molecular mechanisms that modulate cell growth and differentiation. In this paper, we describe the application of alamarBlue, a new and versatile metabolic dye, for the detection of Swiss 3T3 fibroblast proliferation and/or survival. As a redox indicator, alamarBlue is reduced by reactions innate to cellular metabolism and, therefore, provides an indirect measure of viable cell number. Various assay parameters were optimized for a 96-well format to achieve a detectable range of fibroblast cell number from 100 to 20 000 cells/well, which is similar to that obtained with traditional (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and [3H]thymidine assay techniques. Standard (reference) curves generated with a known fibroblast stimulator were used to facilitate quantitation and comparison of unknown test substances. The alamarBlue assay offers the advantages of technical simplicity, freedom from radioisotopes, versatility in detection, no extraction, and excellent reproducibility and sensitivity. We anticipate that this simple and versatile alamarBlue assay, when used alone or in conjunction with other bioassays, will be a useful tool for investigating the complex mechanisms of cellular proliferation.

Key words

alamarBlue bioassay growth factor assay fibroblast proliferation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, S. A.; Gogal, R. M.; Walsh, J. E. A new rapid and simple nonradioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol. Methods 170:211–224; 1994.CrossRefPubMedGoogle Scholar
  2. Alley, M. C.; Scudiero, D. A.; Monks, A., et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48:589–601; 1988.PubMedGoogle Scholar
  3. Baker, C. N.; Banerjee, S. N.; Tenover, F. C. Evaluation of alamar colorimetric MIC method for antimicrobacterial susceptibility testing of gram-negative bacteria. J. Clin. Microbiol. 32:1261–1267; 1994.PubMedGoogle Scholar
  4. de Fries, R.; Mitsuhashi, M. Quantification of mitogen induced human lymphocyte proliferation: comparison of alamarBlue assay to [3H]thymidine incorporation assay. J. Clin. Lab. Anal. 9:89–95; 1995.CrossRefPubMedGoogle Scholar
  5. Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 89:271–277; 1986.CrossRefPubMedGoogle Scholar
  6. Espevik, T.; Nissen-Meyer, J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Methods 95:99–105; 1986.CrossRefPubMedGoogle Scholar
  7. Filman, D. J.; Brawn, R. J.; Dandliker, W. B. Intracellular supravital stain delocalization as an assay for antibody-dependent complement-mediated cell damage. J. Immunol. Methods 6:189–207; 1975.CrossRefPubMedGoogle Scholar
  8. Flick, D. A.; Gifford, G. E. J. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J. Immunol. Methods 68:167–175; 1984.CrossRefPubMedGoogle Scholar
  9. Gillies, R. J.; Didier, N.; Denton, M. Determination of cell number in monolayer cultures. Anal. Biochem. 159:109–113; 1986.CrossRefPubMedGoogle Scholar
  10. Green, L. M.; Read, J. L.; Ware, C. F. Rapid colorimetric assay for cell viability: application to the quantification of cytotoxic and growth inhibitory lymphokines. J. Immunol. Methods 70:257–268; 1984.CrossRefPubMedGoogle Scholar
  11. Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol. Methods 119:203–210; 1989.CrossRefPubMedGoogle Scholar
  12. Heeg, K.; Reimann, J.; Kabelitz, D., et al. A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J. Immunol. Methods 77:237–246; 1985.CrossRefPubMedGoogle Scholar
  13. Honn, K. V.; Singley, J. A.; Chavin, W. fetal bovine serum: a multivariate standard. Proc. Soc. Exp. Biol. Med. 149:344–347; 1975.PubMedGoogle Scholar
  14. Jabbar, S. A. B.; Twentyman, P. R.; Watson, J. V. The MTT assay underestimates the growth inhibitory effects of interferons. Br. J. Cancer 60:523–528; 1989.PubMedGoogle Scholar
  15. Lowik, C. W. G. M.; Alblas, M. J.; van de Ruit, M., et al. Quantification of adherent and nonadherent cells cultured in 96-well plates using the supravital stain neutral red. Anal. Biochem. 213:426–433; 1993.CrossRefPubMedGoogle Scholar
  16. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytoxicity assays. J. Immunol. Methods 65:55–63; 1983.CrossRefPubMedGoogle Scholar
  17. Neville, M. E. Cr-uptake assay. A sensitive and reliable method to quantitate cell viability and cell death. J. Immunol. Methods 99:77–82; 1987.CrossRefPubMedGoogle Scholar
  18. Novak, S. M.; Hindler, J.; Bruckner, D. A. Reliability of two novel methods, alamar and E test, for detection of methicillin-resistant staphylococcus aureus. J. Clin. Microbiol. 31:3056–3057; 1993.PubMedGoogle Scholar
  19. Oliver, M. H.; Harrison, N. K.; Bishop, J. E., et al. A rapid and convenient assay for counting cells cultured in microwell plates: application for assessment of growth factors. J. Cell Sci. 92:513–518; 1989.PubMedGoogle Scholar
  20. Olmsted, C. A. A physico-chemical study of fetal calf sera used as tissue culture nutrient correlated with biological tests for toxicity. Exp. Cell Res. 48:283–299; 1967.CrossRefPubMedGoogle Scholar
  21. Page, B.; Page, M.; Noel, C. A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3:473–476; 1993.Google Scholar
  22. Pfaller, M. A.; Grant, C.; Morthland, V., et al. Comparative evaluation of alternative methods for broth dilution susceptibility testing for fluconazole against candida albicans. J. Clin. Microbiol. 32:506–509; 1994.PubMedGoogle Scholar
  23. Plumb, J. A.; Milroy, R.; Kaye, S. B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan absorption on chemoselectivity determined by novel tetrazolium-based assay. Cancer Res. 49:4435–4440; 1989.PubMedGoogle Scholar
  24. Slater, T. F.; Sawyer, B.; Strauli, U. Studies on succinate-tetrazolium reductase systems III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77:383–393; 1963.CrossRefPubMedGoogle Scholar
  25. Tada, H.; Shibo, O.; Kuroshima, K., et al. An improved colorimetric assay for interleukin-2. J. Immunol. Methods 93:157–165; 1986.CrossRefPubMedGoogle Scholar
  26. Vistica, D. T.; Skehan, P.; Scudiero, D., et al. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51:2515–2520; 1991.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Sherry L. Voytik-Harbin
    • 1
  • Andrew O. Brightman
    • 1
  • Beverly Waisner
    • 2
  • Carlton H. Lamar
    • 2
  • Stephen F. Badylak
    • 1
  1. 1.Hillenbrand Biomedical Engineering CenterPurdue UniversityWest Lafayette
  2. 2.Department of Basic Medical Sciences, School of Veterinary MedicinePurdue UniversityWest Lafayette

Personalised recommendations