Isolation and characterization of a novel human bladder cancer cell line: BK10

  • Kathryn M. Roberson
  • Donna R. Yancey
  • Hesed Padilla-Nash
  • Darryl W. Edwards
  • William Nash
  • Sharone Jacobs
  • George M. Padilla
  • William A. Larchian
  • Cary N. Robertson
Cellular Models


Molecular studies of bladder carcinomas have aided in determining causative genetic events and the prognosis of cancers endowed with certain abnormalities. In vitro bladder cancer characterization of key cytogenetic alterations is useful for study of molecular changes that may promote oncogenic events. In our laboratory, a novel human bladder cancer cell line, BK10, has been established in vitro and passaged for more than 20 mo. This new bladder cancer cell line (BK10) was derived from bladder tissue containing grade III-IV/IV transitional cell carcinoma. Bladder cancer tissue was obtained at the time of radical cystoprostatectomy extirpation. Cell cultures derived from this surgical sample exhibited an epithelial morphology and expressed epithelial cytokeratins. Immunostains of BK10 were negative for prostate specific antigen (PSA), fibronectin, smooth muscle actin alpha, and desmin. Karyotypic analysis revealed an aneuploid chromosomal content 〈4n〉 with many numerical and structural abnormalities previously linked to bladder oncogenesis. Translocations occurred in chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, X and Y. G-banding analysis revealed rearrangements involving chromosomes 9q and 17p, and the location of the ab11 oncogene and the p53 gene, respectively. The availability of this bladder cancer cell line will provide a useful too for the further study of bladder carcinoma oncogenesis and gene therapy.

Key words

bladder cancer cells characterization cytogenetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barron, E.; Finegold, S. M. Bailey and Scott’s diagnostic microbiology. 8th ed. St. Louis: CV Mosby Co.; 1990.Google Scholar
  2. 2.
    Bubenik, J.; Baresova, M.; Viklicky, V., et al. Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int. J. Cancer 11:765–773; 1973.PubMedCrossRefGoogle Scholar
  3. 3.
    Cilento, B. G.; Freeman, M. R.; Schneck, F. X., et al. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J. Urol. 152:665–670; 1994.PubMedGoogle Scholar
  4. 4.
    Conner, J.; Bannerji, R.; Saito, S., et al. Regression of bladder tumors in mice treated with Interleukin-2 gene modified tumor cells. J. Exp. Med. 177:1127–1134; 1993.CrossRefGoogle Scholar
  5. 5.
    Cordon-Cardo, C.; Wartinger, D.; Petrylak, D., et al. Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J. Natl. Cancer Inst. 84:1251–1256; 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    Dubeau, L.; Jones, P. A. Growth of normal and neoplastic urothelium and response to epidermal growth factor in a defined serum-free medium. Cancer Res. 47:2107–2112; 1987.PubMedGoogle Scholar
  7. 7.
    Elliott, A. Y.; Cleveland, P.; Cervenka, J., et al. Characterization of a cell line from human transitional cell cancer of the urinary tract. J. Natl. Cancer Inst. 53:1341–1349; 1974.PubMedGoogle Scholar
  8. 8.
    Fujimoto, K.; Yamada, Y.; Okajima, E., et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res. 52:1393–1398; 1992.PubMedGoogle Scholar
  9. 9.
    Gibas, Z.; Prout, G. R.; Connolly, J. G., et al. Nonrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res. 44:1257–1264; 1984.PubMedGoogle Scholar
  10. 10.
    Grossman, H. B.; Wedemeyer, G.; Ren, L. Um-UC-1 and UM-UC-2: characterization of two new human transitional cell carcinoma lines. J. Urol. 132:834–837; 1984.PubMedGoogle Scholar
  11. 11.
    Habuchi, T.; Ogawa, O.; Kakehi, Y., et al. Allelic loss of chromosome 17p in urothelial cancer: strong association with invasive phenotype. J. Urol. 148:1595–1599; 1992.PubMedGoogle Scholar
  12. 12.
    Horowitz, J. M.; Yandell, D. W.; Park, S. H., et al. Point mutational inactivation of the retinoblastoma antioncogene. Science 243:937–940; 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsu, S.; Raine, M.; Franger, H. Use of Avidin-Biotin Peroxidase Complex (ABC) in immunoperoxidase techniques: a comparison study between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29:577; 1981.PubMedGoogle Scholar
  14. 14.
    Hutton, K. A. R.; Trejdosiewicz, L. K.; Thomas, D. F. M., et al. Urothelial tissue culture for bladder reconstruction: an experimental study. J. Urol. 150:721–725; 1993.PubMedGoogle Scholar
  15. 15.
    Ishikawa, J.; Xu, H. J.; Hu, S. X., et al. Inactivation of the retinoblastoma gene in human bladder and renal cell carcinomas. Cancer Res. 51:5736–5743; 1991.PubMedGoogle Scholar
  16. 16.
    Jakoby, W. B.; Pastan, I., ed. Cell culture. San Diego: Academic Press, Inc.; 1979.Google Scholar
  17. 17.
    Kerns, B. J.; Pence, J. C.; Huper, G., et al. c-erbB-2 expression in breast cancer detected by immunoblotting and immunohistochemistry. J. Histochem. Cytochem. 38:1823–1830; 1990.PubMedGoogle Scholar
  18. 18.
    Kirk, D.; Kagawa, S.; Vener, G., et al. Selective growth of normal adult human urothelial cells in serum-free medium. In Vitro Cell. Dev. Biol. 21:165–171; 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Kyriazis, A. A.; Kyriazis, A. P.; McCombs, W. B., III, et al. Morphological, biological, and biochemical characteristics of human bladder transitional cell carcinomas grown in tissue culture and in nude mice. Cancer Res. 44:3997–4005; 1984.PubMedGoogle Scholar
  20. 20.
    Larchian, W. A.; Roberson, K.; Robertson, C., et al. Liposome mediated gene transfer in human bladder cancer cells. American Urological Association, Inc., 92nd Annual Meeting, New Orleans; April 12–17, 1997.Google Scholar
  21. 21.
    Layfield, L. J.; Kerns, B. J. M.; Conlon, D. H., et al. Determination of proliferation index by MIB-1 immunostaining in early stage breast cancer using quantitative image analysis. Breast J. 1:362–371; 1995.CrossRefGoogle Scholar
  22. 22.
    Liebert, M.; Wedemeyer, G.; Chang, J. H. C., et al. Comparison of antigen expression on normal urothelial cells in tissue section and tissue culture. J. Urol. 144:1288–1292; 1990.PubMedGoogle Scholar
  23. 23.
    Lin, C. W.; Lin, J. C.; Prout, G. R., Jr. Establishment and characterization of four human bladder tumor cell lines and sublines with different degrees of malignancy. Cancer Res. 45:5070–5079; 1985.PubMedGoogle Scholar
  24. 24.
    Lipponen, P. K.; Aaltomaa, S.; Eskelinen, M. Expression of the apoptosis suppressing bcl-2 protein in transitional cell bladder tumors. Histopathology 28:135–140; 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Lo, J.; Kerns, B. J. M.; Amling, C., et al. Correlation of DNA ploidy and histologic diagnosis from prostate core needle biopsies: is DNA ploidy more sensitive than histology for the diagnosis of carcinoma in small specimens. J. Surg. Oncol. 63:41–45; 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Luna, L. G., ed. Routine staining. In: Armed Forces Institute of Histologic Staining Manual. 3rd ed., Chapter 4. New York: McGraw Hill; 1968:32.Google Scholar
  27. 27.
    Miyamoto, H.; Shuin, T.; Torigoe, S., et al. Retinoblastoma gene mutations in primary human bladder cancer. British Journal of Cancer 71:831–835; 1995.PubMedGoogle Scholar
  28. 28.
    Modi, W. S.; Nash, W. G.; Ferrari, A. C., et al. Cytogenetic methodologies for gene mapping and comparative analysis in mammalian cell culture systems. Gene Anal. Tech. 4:75–85; 1987.PubMedCrossRefGoogle Scholar
  29. 29.
    Moll, R.; Achtstatter, T.; Becht, E., et al. Cytokeratins in normal and malignant transitional epithelium: maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am. J. Pathol. 132:123–144; 1988.PubMedGoogle Scholar
  30. 30.
    Moore, G. E.; Morgan, R. T.; Quinn, L. A., et al. A transitional cancer carcinoma cell line. In Vitro 14:301–306; 1978.PubMedCrossRefGoogle Scholar
  31. 31.
    Nayak, S. K.; O’Toole, C.; Price, Z. H. A cell line from an anaplastic transitional cell carcinoma of human urinary bladder. Br. J. Cancer 35:142–151; 1977.PubMedGoogle Scholar
  32. 32.
    O’Toole, G.; Price, Z. H.; Ohnuki, Y., et al. Ultrastructure, karyology and immunology of a line originated from a human transitional cell carcinoma. Br. J. Cancer 38:64–76; 1978.PubMedGoogle Scholar
  33. 33.
    Presti, J. C., Jr.; Reuter, V. E.; Galan, T., et al. Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res. 51:5405–5409; 1991.PubMedGoogle Scholar
  34. 34.
    Ramaekers, F.; Huysmans, A.; Schaart, G., et al. Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Exp. Cell Res. 170:235–249; 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Reznikoff, C. A.; Johnson, M. D.; Norback, D. H., et al. Growth and characterization of normal human urothelium in vitro. In Vitro 19:326–343; 1983.PubMedCrossRefGoogle Scholar
  36. 36.
    Reznikoff, C. A.; Loretz, L. J.; Pesciotta, D. M., et al. Growth kinetics and differentiation in vitro of normal human uroepithelial cells on collagen gel substrates in defined medium. J. Cell. Physiol. 131:285–301; 1987.PubMedCrossRefGoogle Scholar
  37. 37.
    Rheinwald, J. G.; O’Connell, T. M.; O’Connell, N. D., et al. Expression of specific keratin subsets and vimentin in normal human epithelial cells: a function of cell type and conditions of a growth during serial culture. In: Levine, A. J.; Van de Wonde, G. F.; Topp, W. C., ed. Cancer cells 1, the transformed phenotype. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1984:177–190.Google Scholar
  38. 38.
    Rigby, C. C.; Franks, L. M. A human tissue culture cell line from a transitional cell tumour of the urinary bladder: growth, chromosome pattern, and ultrastructure. Br. J. Urol. 24:746–754; 1970.Google Scholar
  39. 39.
    Roberson, K. M.; Robertson, C. N. Isolation and growth of human primary prostate epithelial cultures. Methods Cell Sci. 17:177–185; 1995.CrossRefGoogle Scholar
  40. 40.
    Saito, S.; Bannerji, R.; Gansbacher, B., et al. Immunotherapy of bladder cancer with cytokine gene-modified tumor vaccines. Cancer Res. 54:3516–3520; 1994.PubMedGoogle Scholar
  41. 41.
    Sandberg, A. A.; Berger, C. S. Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer. J. Urol. 151:545–560; 1994.PubMedGoogle Scholar
  42. 42.
    Saran, K. K.; Gould, D.; Godec, C. J., et al. Genetics of bladder cancer. J. Mol. Med. 74:441–445; 1996.PubMedCrossRefGoogle Scholar
  43. 43.
    Schrock, E.; du Manoir, S.; Veldman T., et al. Multicolor spectral karyotyping of human chromosomes. Science 273:494–497; 1996.PubMedCrossRefGoogle Scholar
  44. 44.
    Seabright, M. The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma 36:204–210; 1972.PubMedCrossRefGoogle Scholar
  45. 45.
    Sidransky, D.; von Eschenbach, A.; Tsai, Y. C., et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–709; 1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Takahashi, R.; Hashimoto, T.; Xu, H. J., et al. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 88:5257–5261; 1991.PubMedCrossRefGoogle Scholar
  47. 47.
    Vieweg, J.; Boczkowski, D.; Roberson, K., et al. Efficient gene transfer with adeno-associated virus based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res. 55:2366–2372; 1995.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Kathryn M. Roberson
    • 1
  • Donna R. Yancey
    • 1
  • Hesed Padilla-Nash
    • 2
    • 3
  • Darryl W. Edwards
    • 1
  • William Nash
    • 3
  • Sharone Jacobs
    • 1
  • George M. Padilla
    • 4
  • William A. Larchian
    • 5
  • Cary N. Robertson
    • 1
  1. 1.Division of Urology, Department of SurgeryDuke University Medical CenterDurham
  2. 2.National Human Genome Research Institute, Diagnostic Development BranchNational Institutes of HealthBethesda
  3. 3.H&W Cytogenetic Services, Inc.Lovettsville
  4. 4.Department of Cell BiologyDuke University Medical CenterDurham
  5. 5.Department of Surgery, Memorial Sloan-KetteringDivision of UrologyNew York

Personalised recommendations