Advertisement

The presence of transcription factors in fetal bovine sera

  • Paul A. Knepper
  • Chandra Shekhar Mayanil
  • William Goossens
  • David G. McLone
  • Erin Hayes
Growth, Differentiation And Senescence

Summary

Three sources of fetal bovine serum (FBS) were fractionated by ammonium sulfate precipitation and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to Immobilon-P membranes, immunoblotted with a panel of transcription factor antibodies, and detected by enhanced chemiluminescence. Nine transcription factors were detected—ATF-2, SRE-ZBP, GATA-2, TFIID, Ets-1/Ets-2, E2F-1, Oct-2, p53, and AP-2; four transcription factors were not detected—Myo D, CREB, Sp2, and Wilms’ tumor. The results indicated the presence of varying amounts of several transcription factors in three commercial sources and may represent heretofore unrecognized factors influencing cell culture.

Key words

fetal bovine serum ammonium sulfate precipitation transcription factors DNA binding proteins Western blots SDS-PAGE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attar, R. M.; Gilman, M. Z. Expression cloning of a novel zinc finger protein that binds to the c-fos serum response element. Mol. Cell. Biol. 12:2432–2443; 1992.PubMedGoogle Scholar
  2. 2.
    Baeuerle, P. A. Transcriptional activators. Enter a polypeptide messenger. Nature 373:661–662; 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Bjare, U. Serum-free culture. Pharmacol. Ther. 53:355–374; 1992.PubMedCrossRefGoogle Scholar
  4. 4.
    Caamano, J.; Ruggeri, B.; Momiki, S., et al. Detection of p53 in primary lung tumors and nonsmall cell lung carcinoma cell lines. Am. J. Pathol. 139:839–845; 1991.PubMedGoogle Scholar
  5. 5.
    Dorn, A.; Affolter, M.; Gehring, W. J., et al. Homeodomain proteins in development and therapy. Pharmacol. Ther. 61:155–184; 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Follette, P. J.; O’Farrell, P. H. Connecting cell behavior to patterning: lessons from the cell cycle. Cell 88:309–314; 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Ham, R. G.; McKeehan, W. L. Media and growth requirements. Jakoby, W. B.; Pastan, L. H., ed. Methods in enzymology. Volume 58. San Diego: Academic Press; 1979:43–93.Google Scholar
  8. 8.
    Harris, C. C.; Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329:1318–1327; 1993.PubMedCrossRefGoogle Scholar
  9. 9.
    Hassapoglidou, S.; Diamandis, E. P.; Sutherland, D. J. Quantification of p53 protein in tumor cell lines, breast tissue extracts and serum with time-resolved immunofluorometry. Oncogene 8:1501–1509; 1993.PubMedGoogle Scholar
  10. 10.
    He, J.; Furmanski, P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724; 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoffman, A.; Sinn, E.; Yamamoto, T., et al. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346:387–390; 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Huber, H. E.; Edwards, G.; Goodhart, P. J., et al. Transcription factor E2F binds DNA as a heterodimer. Proc. Natl. Acad. Sci. USA 90:3525–3529; 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Jayme, D. W.; Blackman, K. E. Culture media for propagation of mammalian cells, viruses, and other biologicals. Adv. Biotechnol. Proc. 5:1–30; 1985.Google Scholar
  14. 14.
    Kim, S.-J.; Wagner, S.; Liu, F., et al. Retinoblastoma gene product activates expression of the human TGF-beta 2 gene through transcription factor ATF-2. Nature 358:331–334; 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Knepper, P. A.; Mayanil, C. S. K.; Byrne, R. W., et al. Pax 3 transcription factor binds to hyaluronan. Investig. Ophthalmol. Vis. Sci. (Suppl.) 36:S127; 1995.Google Scholar
  16. 16.
    Knepper, P. A.; Mayanil, C. S. K.; Guzelbag, E., et al. Transcription factors are present in avian yolk and albumin. Dev. Biol. 175:382; 1996.Google Scholar
  17. 17.
    Lai, J. S.; Herr, W. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89:6958–6962; 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Latchman, D. S. What regulates the regulators. Latchman, D. S., ed. Eukaryotic transcription factors. San Diego: Academic Press; 1995:279–313.Google Scholar
  19. 19.
    Levine, A. J.; Momand, J.; Finlay, C. A. The p53 tumour suppressor gene. Nature 351:453–456; 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, M.; Dhanwada, K. R.; Birt, D. F., et al. Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15:1809–1892; 1994.Google Scholar
  21. 21.
    Lukas, R.; Wills, J.; Davis, E., et al. Transcription factors are present in rabbit aqueous fluid. Investig. Ophthalmol. Vis. Sci. (Suppl.) 38:S1128; 1997.Google Scholar
  22. 22.
    Nicolas, R. H.; Goodwin, G. H. Purification and cloning of transcription factors. Latchman, D. S., ed. Transcription factors, a practical approach. Oxford: IRL Press; 1993:81–104.Google Scholar
  23. 23.
    Pognonec, P.; Boulukos, K. E.; Gesquiere, J. C., et al. Mitogenic stimulation of thymocytes results in the calcium-dependent phosphorylation of c-ets-1 proteins. EMBO 7:977–983; 1988.Google Scholar
  24. 24.
    Prochiantz, A.; Theodore, L. Nuclear/growth factors. Bioessays 17:39–44; 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Rana, B.; Mischoulon, D.; Xie, Y., et al. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors. Mol. Cell. Biol. 14:5858–5869; 1994.PubMedGoogle Scholar
  26. 26.
    Schmidt, A. M.; Hori, O.; Cao, R., et al. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 Suppl. 3:S77–80; 1996.PubMedGoogle Scholar
  27. 27.
    Tansey, W. P.; Herr, W. TAFs: guilt by association? Cell 88:729–732; 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Towatari, M.; May, G. E.; Marias, R., et al. Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3. J. Biol. Chem. 270:4101–4107; 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Williams, T.; Tjian, R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 5:670–682; 1991.PubMedGoogle Scholar
  30. 30.
    Wilmut, I.; Schnieke, A. E.; McWhir, J., et al. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813; 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Paul A. Knepper
    • 1
  • Chandra Shekhar Mayanil
    • 1
  • William Goossens
    • 1
  • David G. McLone
    • 1
  • Erin Hayes
    • 1
  1. 1.Laboratory for Oculo-Cerebrospinal Investigation, Division of NeurosurgeryChildren’s Memorial Medical Center and Northwestern University Medical SchoolChicago

Personalised recommendations