In Vitro Cellular & Developmental Biology - Animal

, Volume 34, Issue 9, pp 704–710

Characterization and growth regulation of a rat intrahepatic bile duct epithelial cell line under hormonally defined, serum-free conditions

  • Piet C. de Groen
  • Ben Vroman
  • Karen Laakso
  • Nicholas F. LaRusso
Cellular Models

Summary

Bile duct epithelial cells, or cholangiocytes, proliferate in vivo under a number of pathologic (i.e., partial hepatectomy) and pathophysiologic (i.e., bile duct ligation, malignant transformation) conditions. However, little is known about the possible growth factors that modulate these proliferative responses, in part because an in vitro model to study proliferation of nontransformed, normal cholangiocytes is not available. We report here the development of a rat cholangiocyte cell line (MMRC, minimal media-requiring rat cholangiocytes) that grows under hormonally defined, serum-free conditions on plastic and maintains a cholangiocyte phenotype. Morphologic as well as functional studies indicate that the cell line is polarized and actively transports fluid and electrolytes in an apical to basolateral direction. MMRC, when cultured for 24 mo. and passaged 80 times, have not undergone malignant transformation, because the cell line failed to grow under anchorage-independent conditions or in nude mice. Cellular proliferation is accelerated 2–8-fold by insulin, insulin-like growth factor 1, epidermal growth factor, and hepatocyte growth factor, growth factors known to stimulate tyrosine kinase receptors, and inhibited 2–10-fold by TGFβ and IL-2. Glyco-conjugates of primary (i.e., cholic and chenodeoxycholic acid) and secondary bile acids (i.e., deoxycholic and lithocholic acid) do not alter proliferation at low concentration (1 µM), but are toxic at higher concentration (10 µM). In summary, we have developed and characterized a cholangiocyte cell line derived from normal rat liver, which grows under hormonally defined, serum-free conditions, maintains a nonmalignant, cholangiocyte phenotype, displays morphologic and functional features of polarity, and alters its proliferation rate in response to a variety of growth factors.

Key words

cholangiocyte epithelia proliferation growth factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpini, G.; Glaser, S.; Robertson, W. E., et al. Genetic and functional expression of the ileal Na-dependent bile acid transporter and 14kD cytosolic bile acid binding protein in large but not small cholangiocytes from rat liver. Hepatology 24:255A; 1996.Google Scholar
  2. 2.
    Alpini, G.; Lenzi, R.; Sarkozi, L., et al. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J. Clin. Invest. 81:569–578; 1988.PubMedGoogle Scholar
  3. 3.
    Alpini, G.; Ulrich, C.; Roberts, S., et al. Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. Am. J. Physiol. 272:G289–297; 1997.PubMedGoogle Scholar
  4. 4.
    Amsler, K.; Cook, J. S. Development of Na+-dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Physiol. 242:C94–101; 1982.PubMedGoogle Scholar
  5. 5.
    Baltrop, J. A.; Owen, T. C.; Cory, A. H., et al. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg. Med. Chem. Lett. 1:611–614; 1991.CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya, E.; Panchal, A.; Wilkins, T. J., et al. Insulin, transforming growth factors, and substrates modulate growth of guinea pig pancreatic duct cells in vitro. Gastroenterology 109:944–952; 1995.PubMedCrossRefGoogle Scholar
  7. 7.
    Borenfreund, E.; Higgins, P. J.; Steinglass, M., et al. Properties and malignant transformation of established rat liver parenchymal cells in culture. J. Natl. Cancer Inst. 55:375–384; 1975.PubMedGoogle Scholar
  8. 8.
    Capella, G.; Cronauer-Mitra, S.; Pienado, M. A., et al. Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environ. Health Perspect. 93:125–131; 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    Chaurasia, O. P.; Marcuard, S. P.; Seidel, E. R. Insulin-like growth factor I in human gastrointestinal exocrine secretions. Regul. Pept. 50:113–119; 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Chow, N. H.; Huang, S. M.; Chan, S. H., et al. Significance of c-erbB-2 expression in normal and neoplastic epithelium of biliary tract. Anticancer Res. 15:1055–1059; 1995.PubMedGoogle Scholar
  11. 11.
    Ciacci, C.; Mahida, Y. R.; Dignass, A., et al. Functional interleukin-2 receptors on intestinal epithelial cells. J. Clin. Invest. 92:527–532; 1993.PubMedGoogle Scholar
  12. 12.
    Colombo, C.; Battezzati, P. M. Hepatobiliary manifestations of cystic fibrosis. Eur. J. Gastroenterol. Hepatol. 8:748–754; 1996.PubMedGoogle Scholar
  13. 13.
    Dignass, A. U.; Podolsky, D. K.; Rachmilewitz, D. NO chi generation by cultured small intestinal epithelial cells. Dig. Dis. Sci. 40:1859–1865; 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Dulbecco, R.; Bologna, M.; Unger, M. Control of differentiation of a mammary cell line by lipids. Proc. Natl. Acad. Sci. USA 77:1551–1555; 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Grau, M.; Rodriguez, C.; Soley, M., et al. Relationship between epidermal growth factor in mouse submandibular glands, plasma, and bile: effects of catecholamines and fasting. Endocrinology 135:1854–1862; 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishii, M.; Vroman, B.; LaRusso, N. F. Morphologic demonstration of receptor-mediated endocytosis of epidermal growth factor by isolated bile duct epithelial cells. Gastroenterology 98:1284–1291; 1990.PubMedGoogle Scholar
  17. 17.
    Jones, D. E., Jr.; Tran-Patterson, R.; Cui, D. M., et al. Epidermal growth factor secreted from the salivary gland is necessary for liver regeneration. Am. J. Physiol. 268:G872–878; 1995.PubMedGoogle Scholar
  18. 18.
    Joplin, R.; Hishida, T.; Tsubouchi, H., et al. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J. Clin. Invest. 90:1284–1289; 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly, D.; McFadyen, M.; King, T. P., et al. Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reprod. Fertil. Dev. 4:183–191; 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Kline, T. J.; De las Morenas, T.; O’Brien, M., et al. Squamous metaplasia of extrahepatic biliary system in an AIDS patient with cryptosporidia and cholangitis. Dig. Dis. Sci. 38:960–962; 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Kong, W.; Philipps, A. F.; Dvorak, B., et al. Presence of insulin-like growth factor I but absence of the binding proteins in the bile of rats. Am. J. Physiol. 268:R266–271; 1995.PubMedGoogle Scholar
  22. 22.
    Kong, W. Y.; Koldovsky, O.; Rao, R. K. Appearance of exogenous epidermal growth factor in liver, bile, and intestinal lumen of suckling rats. Gastroenterology 102:661–667; 1992.PubMedGoogle Scholar
  23. 23.
    Kossor, D. C.; Goldstein, R. S.; Ngo, W., et al. Biliary epithelial cell proliferation following alpha-naphthylisothiocyanate (ANIT) treatment: relationship to bile duct obstruction. Fundam. Appl. Toxicol. 26:51–62; 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Lazaridis, K.; Pham, L.; de Groen, P. C., et al. Rat cholangiocytes express the ileal Na+-dependent taurocholate co-transporter. Hepatology 24:351A; 1996.Google Scholar
  25. 25.
    LeRoith, D.; McGuinness, M.; Shemer, J., et al. Insulin-like growth factors. Biol. Signals 1:173–181; 1992.PubMedGoogle Scholar
  26. 26.
    Mathis, G. A.; Sirica, A. E. Effects of medium and substratum conditions on the rates of DNA synthesis in primary cultures of bile ductular epithelial cells. In Vitro Cell. Dev. Biol. 26:113–118; 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsumoto, K.; Fujii, H.; Michalopoulos, G., et al. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro. Hepatology 20:376–382; 1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Nishikawa, Y.; Tokusashi, Y.; Kadohama, T., et al. Hepatocytic cells form bile duct-like structures within a three-dimensional collagen gel matrix. Exp. Cell Res. 223:357–371; 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Sirica, A. E.; Gainey, T. W. A new rat bile ductular epithelial cell culture model characterized by the appearance of polarized bile ducts in vitro. Hepatology 26:537–549; 1997.PubMedGoogle Scholar
  30. 30.
    Sirica, A. E.; Radaeva, S.; Caran, N. Neu overexpression in the furan rat model of cholangiocarcinogenesis compared with biliary ductal cell hyperplasia. Am. J. Pathol. 151:1685–1694; 1997.PubMedGoogle Scholar
  31. 31.
    Sullivan, T. A.; MacDonald, R. G. Distribution of insulin-like growth factor receptors in rat intestinal epithelium. Nebr. Med. J. 80:58–61; 1995.PubMedGoogle Scholar
  32. 32.
    Tan, C. K.; Podila, P. V.; Taylor, J. E., et al. Human cholangiocarcinomas express somatostatin receptors and respond to somatostatin with growth inhibition. Gastroenterology 108:1908–1916; 1995.PubMedCrossRefGoogle Scholar
  33. 33.
    Terada, T.; Nakanuma, Y.; Sirica, A. E. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum. Pathol. 29:175–180; 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Voravud, N.; Foster, C. S.; Gilbertson, J. A., et al. Oncogene expression in cholangiocarcinoma and in normal hepatic development. Human Pathol. 20:1163–1168; 1989.Google Scholar
  35. 35.
    Vroman, B.; LaRusso, N. F. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab. Invest. 74:303–313; 1996.PubMedGoogle Scholar
  36. 36.
    Wake, N.; Slocum, H. K.; Rustum, Y. M., et al. Chromosomes and causation of human cancer and leukemia. XLIV. A method for chromosome analysis of solid tumors. Cancer Genet. Cytogenet. 3:1–10; 1981.PubMedCrossRefGoogle Scholar
  37. 37.
    Washburn, W. K.; Lewis, W. D.; Jenkins, R. L. Aggressive surgical resection for cholangiocarcinoma. Arch. Surg. 130:270–276; 1995.PubMedGoogle Scholar
  38. 38.
    Wiesner, R. H. Current concepts in primary sclerosing cholangitis. Mayo Clinic Proc. 69:969–982; 1994.Google Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Piet C. de Groen
    • 1
  • Ben Vroman
    • 1
  • Karen Laakso
    • 1
  • Nicholas F. LaRusso
    • 1
    • 2
  1. 1.Center for Basic Research in Digestive Diseases, Department of Internal MedicineMayo Medical School, Clinic and FoundationRochester
  2. 2.Biochemistry and Molecular BiologyMayo Medical School, Clinic and FoundationRochester

Personalised recommendations