Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype

  • Peter I. Lelkes
  • Daniel L. Galvan
  • G. Thomas Hayman
  • Thomas J. Goodwin
  • Dawn Y. Chatman
  • Sunu Cherian
  • Raul M. G. Garcia
  • Brian R. Unsworth
Cellular Models


We are studying microenvironmental cues which contribute to neuroendocrine organ assembly and tissue-specific differentiation. As our in vitro model, we cultured rat adrenal medullary PC12 pheochromocytoma cells in a novel cell culture system, the NASA rotating wall vessel (RWV) bioreactors. This “simulated microgravity” environment in RWV bioreactors, characterized by randomizing gravitational vectors and minimizing shear stress, has been shown to favor macroscopic tissue assembly and to induce tissue-specific differentiation. We hypothesized that the unique culture conditions in the RWV bioreactors might enhance the in vitro formation of neuroendocrine organoids. To test our hypothesis, we evaluated the expression of several markers of neuroendocrine differentiation in cultures of PC12 cells maintained for up to 20 d in the slow turning lateral vessel (STLV) type RWV. PC12 cell differentiation was assessed by morphological, immunological, biochemical and molecular techniques. PC12 cells, cultured under “simulated microgravity” conditions, formed macroscopic, tissue-like organoids several millimeters in diameter. Concomitantly, the expression of phenylethanolamine-N-methyl transferase (PNMT), but not of other catecholamine synthesizing enzymes, was enhanced. Increased PNMT expression, as verified on both the gene and protein level, was accompanied by an increase in the specific activity of the enzyme. Furthermore, after 20 d in culture in the STLV, we observed altered patterns of protein tyrosine phosphorylation and prolonged activation of c-fos, a member of the AP-1 nuclear transcription factor complex. We conclude that culture conditions in the RWV appear to selectively activate signal transduction pathways leading to enhanced neuroendocrine differentiation of PC12 cells.

Key words

PC12 cells cell culture PNMT TH differentiation PCR rotating wall vessel bioreactor simulated microgravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D. J. Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Ann. Rev. Neurosci. 16:129–158; 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Bacallao, R.; Antony, C.; Dotti, C., et al., The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109:2817–2832; 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Becker, J. L.; Prewett, T. L.; Spaulding, G. F., et al. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations. J. Cell. Biochem. 51:283–289; 1993.PubMedCrossRefGoogle Scholar
  4. 4.
    Bell, E. Tissue engineering: a perspective. J. Cell. Biochem. 45:239–241; 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Bethea, C. L.; Kozak, S. L. Effect of extracellular matrix on PC12 cell shape and dopamine processing. Mol. Cell. Endocrinol. 37:319–329; 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Bethea, C. L.; Kozak, S. L. Further characterization of substratum influence on PC12 cell shape and dopamine processing. Mol. Cell. Endocrinol. 42:59–72; 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    Bohn, M. C.; Goldstein, M.; Black, I. B. Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev. Biol. 82:1–10; 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Borriello, F.; Lederer, J. Construction of quantitative RT-PCR MIMICs. Biotechniques 19:580–584; 1995.PubMedGoogle Scholar
  9. 9.
    Byrd, J. C.; Alho, H. Differentiation of PC12 pheochromocytoma cells by sodium butyrate. Brain Res. 428:151–155; 1987.PubMedGoogle Scholar
  10. 10.
    Byrd, J. C.; Hadjiconstantinou, M.; Cavalla, D. Epinephrine synthesis in the PC12 phenochromocytoma cell line. Eur. J. Pharmacol. 127:139–142; 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Byrd, J. C.; Naranjo, J. R.; Lindberg, I. Proenkephalin gene expression in the PC12 pheochromocytoma cell line: stimulation by sodium butyrate. Endocrinology 121:1299–1305; 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Chong, J. A.; Tapia-Ramírez, J.; Kim, S., et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957; 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Ebert, S. N.; Wong, D. L. Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1. J. Biol. Chem. 270:17299–17305; 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Ehrlich, M. E.; Evinger, M. U.; Joh, T. H., et al. Do glucocorticoids induce adrenergic differentiation in adrenal cells of neural crest origin? Dev. Brain Res. 50:129–137; 1989.CrossRefGoogle Scholar
  15. 15.
    Evinger, M.; Joh, T. H.; Reis, D. Transcriptional regulation of phenylethanolamine N-methyl transferase gene expression. In: Joh, T. H., ed. Catecholamine genes. Vol. 9. New York: Wiley-Liss; 1990:137–146.Google Scholar
  16. 16.
    Freshney, R. I. Culture of animal cells. A manual of basic technique. Third edition. New York: Wiley-Liss, Inc.; 1994.Google Scholar
  17. 17.
    Fujita, K.; Lazarovici, P.; Guroff, G. Regulation of the differentiation of PC12 pheochromocytoma cells. Environ. Health Perspect. 80:127–142; 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Galvan, D. L.; Liu, J.; Wankowski, D. M., et al. Differential modulation of extracellular matrix protein expression in adrenal medullary cells cultured under simulated microgravity conditions. Mol. Biol. Cell 6:S975; 1995.Google Scholar
  19. 19.
    Gilbert, S. F. Developmental Biology. 3rd edition. Sunderland, MA: Sinauer Associates, Inc.; 1991.Google Scholar
  20. 20.
    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.PubMedGoogle Scholar
  21. 21.
    Goodwin, T. J.; Prewett, T. L.; Wolf, D. A., et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51:301–311; 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A., et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202:181–192; 1993.PubMedGoogle Scholar
  23. 23.
    Greene, L. A.; Tischler, A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428; 1976.PubMedCrossRefGoogle Scholar
  24. 24.
    Hwang, O.; Kim, M. L.; Lee, J. D. Differential induction of gene expression of catecholamine biosynthetic enzymes and preferential increase in norepinephrine by forskolin. Biochem. Pharmacol. 48:1927–1934; 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Jaeger, C. B.; Aebischer, P.; Tresco, P. A., et al. Growth of tumour cell lines in polymer capsules: ultrastructure of encapsulated PC12 cells. J. Neurocytol. 21:469–480; 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Jessup, J. M.; Goodwin, T. J.; Garcia, R., et al. STS-70: first flight of EDU-1. In Vitro Cell. Dev. Biol. 32A:13A; 1996.Google Scholar
  27. 27.
    Jessup, J. M.; Goodwin, T. J.; Spaulding, G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51:290–300; 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Jessup, J. M.; Nachman, A.; Ford, R. D. Low shear stress of NASA Rotating Wall Vessel (RWV) increases CO2 and acid production while supporting differentiation in three-dimensional cultures. In Vitro Cell. Dev. Biol. 31A:8A; 1995.Google Scholar
  29. 29.
    Karl, M.; Saviolakis, G. A.; Gravanis, A., et al. The PC12 rat pheochromocytoma cell line expresses the prodynorphin gene and secretes the 8 kDa dynorphin product. Regul. Pept. 61:99–104; 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim, K. T.; Park, D. H.; Joh, T. H. Parallel up-regulation of catecholamine biosynthetic enzymes by dexamethasone in PC12 cells. J. Neurochem. 60:946–951; 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Klement, B. J.; Spooner, B. S. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity. J. Exp. Zool. 269:230–241; 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Kloth, S.; Ebenbeck, C.; Kubitza, M., et al. Stimulation of renal microvascular development under organotypic culture conditions. FASEB J. 9:963–967; 1995.PubMedGoogle Scholar
  33. 33.
    Koller, M. R.; Papoutsakis, E. T. Cell adhesion in animal cell culture: physiological and fluid-mechanical implications. In: Hjortso, M. A.; Roos, J. W., ed Cell adhesion: fundamentals and biotechnological applications. Vol. 3. New York, Basel, Hong Kong: Marcel Dekker, Inc.; 1994:61–110.Google Scholar
  34. 34.
    Lelkes, P. I. “Our” PC12 cells synthesize and secrete epinephrine. 6th International Symposium on Chromaffin Cell Biology. (Abstract) 1991:58.Google Scholar
  35. 35.
    Lelkes, P. I.; Manolopoulos, E. G.; Chick, D. M., et al. Endothelial cell heterogeneity and organ-specificity. In: Maragoudakis, M. E.; Gullino, P.; Lelkes, P. I., ed. Angiogenesis: molecular biology, clinical aspects. New York: Plenum Press; 1994:15–28.Google Scholar
  36. 36.
    Lelkes, P. I.; Ramos, E. M.; Chick, D. M., et al. Microgravity decreases tyrosine hydroxylase expression in rat adrenals. FASEB J. 8:1177–1182; 1994.PubMedGoogle Scholar
  37. 37.
    Lelkes, P. I.; Unsworth, B. R. Role of heterotypic interactions between endothelial cells and parenchymal cells in organospecific differentiation: a possible trigger of vasculogenesis. In: Maragoudakis, M. E.; Gullino, P.; Lelkes, P. I., ed. Angiogenesis in health and disease. New York: Plenum Press; 1992:27–43.Google Scholar
  38. 38.
    McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Mizrachi, Y.; Lelkes, P. I.; Ornberg, R. L., et al. Specific adhesion between pheochromocytoma (PC12) cells and adrenal medullary endothelial cells in co-culture. Cell. Tissue Res. 256:365–372; 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Mizrachi, Y.; Narranjo, J.; Levi, B.-Z., et al. PC12 cells differentiate into chromaffin cell like phenotype in co-culture with adrenal medullary endothelial cells. Proc. Natl. Acad. Sci. USA 87:6161–6165; 1990.PubMedCrossRefGoogle Scholar
  41. 41.
    Morita, K.; Ebert, S. N.; Wong, D. L. Role of transcription factor Egr-1 in phorbol ester-induced phenylethanolamine N-methyltransferase gene expression. J. Biol. Chem. 270:11161–11167; 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Papadimitriou, E.; Unsworth, B. R.; Maragoudakis, M. E., et al. Time course and quantification of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium 1:207–219; 1993.Google Scholar
  43. 43.
    Prewett, T. L.; Goodwin, T. J.; Spaulding, G. F. Three-dimensional modeling of T-24 human bladder carcinoma cell line: a new simulated microgravity culture vessel. J. Tissue Cult. Meth. 15:29–36; 1993.CrossRefGoogle Scholar
  44. 44.
    Rasouly, D.; Shavit, D.; Zuniga, R., et al. Staurosporine induces neurite outgrowth in neuronal hybrids (PC12EN) lacking NGF receptors. J. Cell. Biochem. 62:356–371; 1996.PubMedCrossRefGoogle Scholar
  45. 45.
    Rausch, D. M.; Iacangelo, A. L.; Eiden, L. E. Glucocorticoid-and nerve growth factor-induced changes in chromogranin A expression define two different neuronal phenotypes in PC12 cells. Mol. Endocrinol. 2:921–927; 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Ross, M. E.; Evinger, M. J.; Hyman, S. E., et al. Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyl transferase promoter using fusion genes introduced into chromaffin cells in primary culture. J. Neurosci. 10:520–530; 1990.PubMedGoogle Scholar
  47. 47.
    Saadat, S.; Stehle, A. D.; Lamouroux, A., et al. Influence of cell-cell contact on levels of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells. J. Biol. Chem. 262:13007–13014; 1987.PubMedGoogle Scholar
  48. 48.
    Saadat, S.; Thoenen, H. Selective induction of tyrosine hydroxylase by cell-cell contact in bovine adrenal chromaffin cells is mimicked by plasma membranes. J. Cell Biol. 103:1991–1997; 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Schneeberger, C.; Speiser, P.; Kury, F., et al. Quantitative detection of reverse transcriptase-PCR products by means of a novel and sensitive DNA stain. PCR Meth. Appl. 4:234–238; 1995.Google Scholar
  50. 50.
    Schoenherr, C. J.; Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363; 1995.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Meth. 14:51–58; 1992.CrossRefGoogle Scholar
  52. 52.
    Siebert, P. D.; Larrick, J. W. Competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 14:244–249; 1993.PubMedGoogle Scholar
  53. 53.
    Spooner, B. S.; Hardman, P.; Paulsen, A. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight. J. Exp. Zool. 269:212–222; 1994.PubMedCrossRefGoogle Scholar
  54. 54.
    Stachowiak, M. K.; Hong, J. S.; Viveros, O. H. Coordinate and differential regulation of phenylethanolamine N-methyl transferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Res. 510:277–288; 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Stein, R.; Orit, S.; Anderson, D. J. The induction of a neural-specific gene, SCG10, by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and glucocorticoid inhibitable. Dev. Biol. 127:316–325; 1988.PubMedCrossRefGoogle Scholar
  56. 56.
    Tischler, A. S.; Greene, L. A. Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab. Invest. 39:77–89; 1978.PubMedGoogle Scholar
  57. 57.
    Wong, D. L.; Siddall, B.; Wang, W. Hormonal control of rat adrenal phenylethanolamine N-methyl transferase. Enzyme activity, the final critical pathway. Neuropsychopharmacology 13:223–234; 1995.PubMedCrossRefGoogle Scholar
  58. 58.
    Youdim, M. B. H.; Heldman, E.; Pollard, H. B., et al. Contrasting monoamine oxidase activity and tyramine induced catecholamine release in PC12 and chromaffin cells. Neuroscience 19:1311–1318; 1986.PubMedCrossRefGoogle Scholar
  59. 59.
    Zimmerman, K.; Mannhalter, J. W. Technical aspects of quantitative competitive PCR. Biotechniques 21:268–279; 1996.Google Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Peter I. Lelkes
    • 3
  • Daniel L. Galvan
    • 1
  • G. Thomas Hayman
    • 3
  • Thomas J. Goodwin
    • 2
  • Dawn Y. Chatman
    • 2
  • Sunu Cherian
    • 3
  • Raul M. G. Garcia
    • 3
  • Brian R. Unsworth
    • 1
  1. 1.Department of BiologyMarquette UniversityMilwaukee
  2. 2.Johnson Space CenterHouston
  3. 3.Laboratory of Cell Biology, Department of MedicineUniversity of Wisconsin Medical School, Sinai Samaritan Medical CenterMilwaukee

Personalised recommendations