In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to αvβ3 integrin localization

  • Bruno Vailhé
  • Xavier Ronot
  • Philippe Tracqui
  • Yves Usson
  • Léone Tranqui
Cellular Models


This study deals with the role of the mechanical properties of matrices in in vitro angiogenesis. The ability of rigid fibrinogen matrices with fibrin gels to promote capillarylike structures was compared. The role of the mechanical properties of the fibrin gels was assessed by varying concentration of the fibrin gels. When the concentration of fibrin gels was decreased from 2 mg/ml to 0.5 mg/ml, the capillarylike network increased. On rigid fibrinogen matrices, capillarylike structures were not formed. The extent of the capillarylike network formed on fibrin gels having the lowest concentration depended on the number of cells seeded. The dynamic analysis of capillarylike network formation permitted a direct visualization of a progressive stretching of the 0.5 mg/ml fibrin gels. This stretching was not observed when fibrin concentration increases. This analysis shows that 10 h after seeding, a prearrangement of cells into ringlike structures was observed. These ringlike structures grew in size. Between 16 and 24 h after seeding, the capillarylike structures were formed at the junction of two ringlike structures. Analysis of the αvβ3 integrin localization demonstrates that cell adhesion to fibrinogen is mediated through the αvβ3 integrin localized into adhesion plaques. Conversely, cell adhesion to fibrin shows a diffuse and dot-contact distribution. We suggest that the balance of the stresses between the tractions exerted by the cells and the resistance of the fibrin gels triggers an angiogenic signal into the intracellular compartment. This signal could be associated with modification in the αvβ3 integrin distribution.

Key words

endothelial cell neovascularization in vitro fibrin matrix mechanical properties dynamic analysis αvβ3 integrins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, R. D.; Allen, N. S.; Travis, J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analysing microtubule-related motility in the reticulopodial network of Allogromia paticollaris. Cell Motil. 1:291–302; 1981.PubMedCrossRefGoogle Scholar
  2. 2.
    Barocas, V. H.; Moon, A. G.; Tranquillo, R. T. The fibroblast-populated collagen microsphere assay of cell traction force-part 2: measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170; 1995.PubMedGoogle Scholar
  3. 3.
    Basson, C. T.; Knowles, W. J.; Bell, L., et al. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events. J. Cell Biol. 110:789–801; 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Bauer, J.; Margolis, M.; Schreiner, C., et al. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J. Cell. Physiol. 153:437–449; 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Bretscher, M. S. Cells use their transferrin receptors for locomotion. Eur. Mol. Biol. Organ. J. 11:393–389; 1992.Google Scholar
  6. 6.
    Brooks, P. C.; Clark, R. A. F.; Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571; 1994.PubMedCrossRefGoogle Scholar
  7. 7.
    Burridge, K.; Fath, K.; Kelly, T., et al. Focal adhesion: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525; 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheresh, D. Human endothelial cells synthesize and express an Arg-Gly-Asp directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84:6471–6475; 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Cotran, R. S.; Kumar, V.; Robbins, S. L. Inflammation and repair. In: Pathologic basis of disease, 4th ed. London: W. B. Saunders. 1990: 39–86.Google Scholar
  10. 10.
    Dejana, E.; Lampugnani, M. G.; Giorgi, M., et al. Fibrinogen induces endothelial cell adhesion and spreading via release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood 75:1509–1517; 1990.PubMedGoogle Scholar
  11. 11.
    Drake, C. J.; Cheresh, D. A.; Little, C. D. An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci. 108:2655–2661; 1995.PubMedGoogle Scholar
  12. 12.
    Duband, J. L.; Nuckolls, G. H.; Ishiara, A., et al. Fibronectin receptor exhibits lateral motility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107:1385–1396; 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Dubois-Stringfellow, N.; Jonczyck, A.; Bautch, V. L. Perturbations in the fibrinolytic pathway abolish cyst formation but not capillary-like organization of cultured murine endothelial cells. Blood 83(11):3206–3217; 1994.PubMedGoogle Scholar
  14. 14.
    Engvall, E.; Ruoslahti, E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20:1–5; 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Folkman, J. Diagnostic and therapeutic application of angiogenesis research. C.R. Acad. Sci. III 16:914–918; 1993.Google Scholar
  16. 16.
    Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1 (1):27–31; 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Folkman, J.; Klagsbrun, M. Angiogenic factors. Science (Wash., DC). 235:442–447; 1987.CrossRefGoogle Scholar
  18. 18.
    Fournier, N.; Doillon, C. J. In vitro angiogenesis in fibrin matrices containing fibronectin or hyaluronic acid. Cell Biol. Int. Rep. 16(12):1251–1263; 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Gamble, J. R.; Matthias, L. J.; Meyer, G., et al. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121(4):931–943; 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Granger, B. L.; Lazarides, E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18:1053–1063; 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Grant, D. S.; Kinsella, J. L.; Fridman, R., et al. Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J. Cell. Physiol. 153:614–625; 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Guenet, J. M. Thermoreversible gelation of polymers and biopolymers. London: Academic Press; 1992.Google Scholar
  23. 23.
    Guidry, C.; Grinnell, G. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Collagen Relat. Res. 6:515–529; 1986.Google Scholar
  24. 24.
    Hynes, R. O. Wound healing, inflammation, and fibrosis. In: Fibronectins. New York: Springer-Verlag; 1990:349–364.Google Scholar
  25. 25.
    Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25; 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. 87:3579–3583; 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Ingber, D. E. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848; 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Ingber, D. E. Cellular tensegrity: new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627; 1993.PubMedGoogle Scholar
  29. 29.
    Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58:803–805; 1989.PubMedCrossRefGoogle Scholar
  30. 30.
    Ingber, D. E.; Kike, L.; Hansen, L., et al. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 150:173–224; 1994.PubMedGoogle Scholar
  31. 31.
    Jaffé, E. A.; Nachman, A. R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.PubMedGoogle Scholar
  32. 32.
    Juliano, R. L.; Haskill, S. Signal transduction from the extracellular matrix. J. Cell Biol. 120(3):577–585; 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Keckwick, R. A.; McKay, M. E.; Nance, M. H., et al. The purification of human fibrinogen. Biochem. J. 60:671–683; 1955.Google Scholar
  34. 34.
    Klagsbrun, M.; D’Amore, P. A. Regulators of angiogenesis. Annu. Rev. Physiol. 53:217–239; 1991.PubMedCrossRefGoogle Scholar
  35. 35.
    Kubota, Y.; Kleinman, H. K.; Martin, G. R., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598; 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Montesano, R.; Pepper, M. S.; Vassali, J.-D., et al. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132:460–466; 1987.CrossRefGoogle Scholar
  37. 37.
    Nermut, M. V.; Eason, E.; Hirst, E. M., et al. Cell/substrate adhesion in RSV-transformed rat fibroblasts. Exp. Cell Res. 193:382–391; 1991.PubMedCrossRefGoogle Scholar
  38. 38.
    Nicosia, R. F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. Lab. Invest. 63(1):115–122; 1990.PubMedGoogle Scholar
  39. 39.
    Opas, M. Substratum mechanics and cell differentiation. Int. Rev. Cytol. 150:119–137; 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Pepper, M. S.; Vassalli, J. D.; Orci, L., et al. Angiogenesis in vitro: cytokines interactions and balanced extracellular proteolysis. In: Maragoudakis, M. E., et al., eds. Angiogenesis: molecular biology, clinical aspects. New York: Plenum Press; 1994.Google Scholar
  41. 41.
    Schwartz, M. A.; Ingber, D. E. Integrating with integrins. Mol. Biol. Cell 5:389–393; 1994.PubMedGoogle Scholar
  42. 42.
    Streeter, I. B.; Rees, D. A. Fibroblast adhesion to RGDs shows novel features compared with fibronectin. J. Cell Biol. 105:507–515; 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Streuli, C. H.; Bissel, M. J. Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110:1405–1415; 1990.PubMedCrossRefGoogle Scholar
  44. 44.
    Tawil, N.; Wilson, P.; Carbonetto, S. Integrins in point contacts mediate cell spreading: factors that regulate integrin accumulation in point contacts vs. focal contacts. J. Cell Biol. 120(1):261–271; 1993.PubMedCrossRefGoogle Scholar
  45. 45.
    Tranqui, L.; Andrieux, A.; Hudry-Clergeon, G., et al. Differential structural requirements for fibrinogen binding to platelets and to endothelial cells. J. Cell Biol. 108:2519–2527; 1989.PubMedCrossRefGoogle Scholar
  46. 46.
    Tranqui, L.; Usson, Y.; Marie, C., et al. Adhesion of CHO cells to fibronectin is mediated by functionally and structurally distinct adhesion plaques. J. Cell Sci. 106:377–387; 1993.PubMedGoogle Scholar
  47. 47.
    Vernon, R. B.; Lara, S. L.; Drake, C. J., et al. Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell. Dev. Biol. 31:120–131; 1995.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1997

Authors and Affiliations

  • Bruno Vailhé
    • 1
  • Xavier Ronot
    • 4
  • Philippe Tracqui
    • 3
  • Yves Usson
    • 2
  • Léone Tranqui
    • 1
  1. 1.Laboratoire de Bioénergétique Fondamentale et AppliquéeUniversité Joseph FourierGrenoble Cedex 9France
  2. 2.Laboratoire Dynamique de l’Organisation des Génomes, Institut Albert BonniotUniversité Joseph FourierLa Tronche CedexFrance
  3. 3.Laboratoire TIMC, UMR CNRS 5525Faculté de Médecine, Institut Albert Bonniot, Domaine de la MerciLa TroncheFrance
  4. 4.Laboratoire de Neurobiologie du DéveloppementE.P.H.E.Montpellier Cedex 05France

Personalised recommendations