GTSF-2: A new, versatile cell culture medium for diverse normal and transformed mammalian cells

  • Peter I. Lelkes
  • Esther Ramos
  • Victor V. Nikolaychik
  • Dawn M. Wankowski
  • Brian R. Unsworth
  • Thomas J. Goodwin
Proceedings—Nasa Bioreactors Workshop On Regulation Cell And Tissue Differentiation


The aim of this study was to test the versatility of a new basal cell culture medium, GTSF-2. In addition to traditional growth-factors, GTSF-2 contains a blend of three sugars (glucose, galactose, and fructose) at their physiological levels. For these studies, we isolated normal endothelial cells from human, bovine, and rat large blood vessels and microvessels. In addition, GTSF-2 was also tested as a replacement for high-glucose-containing medium for PC12 pheochromocytoma cells and for other, transformed cell lines. The cell growth characteristics were assessed with a novel cell viability and proliferation assay, which is based on the bioreduction of the fluorescent dye, Alamar Blue. After appropriate calibration, the Alamar Blue assay was found to be equivalent to established cell proliferation assays. Alamar Blue offers the advantage that cell proliferation can be measured in the same wells over an extended period of time. For some of the cell types (e.g., endothelial cells isolated from the bovine aorta, the rat adrenal medulla, or the transformed cells), proliferation in unmodified GTSF-2 was equivalent to that in the original culture media. For others cell types (e.g., human umbilical vein endothelial cells and PC12 cells), GTSF-2 proved to be a superior growth medium, when supplemented with simple additives, such as endothelial cell growth supplement (bFGF) or horse serum. Our results suggest that GTSF-2 is a versatile basal medium that will be useful for studying organ-specific differentiation in heterotypic coculture studies.

Key words

cell culture medium endothelial cells PC12 cells sugar cell proliferation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auerbach, R.; Alby, L.; Grieves, J., et al. Monoclonal antibody against angiotensin-converting enzyme: its use as a marker for murine, bovine, and human endothelial cells. Proc. Natl. Acad. Sci. USA 79:7891–7895; 1982.PubMedCrossRefGoogle Scholar
  2. 2.
    Christensen, C. W.; Samet, M. M.; Chick, D. M., et al. Experimental studies of pulsatile flow and endothelial-cell adaptation in ventricle-shaped cell culture chambers. ASAIO J. 38:M501-M506; 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen, R. A. Dysfunction of vascular endothelium in diabetes mellitus. Circulation 87:V-67–V-76; 1993.Google Scholar
  4. 4.
    Dulbecco, R.; Freeman, G. Plaque formation by the polyoma virus. Virology 8:396–397; 1959.PubMedCrossRefGoogle Scholar
  5. 5.
    Essig-Marcello, J. S.; Van Buskirk, R. G. A double-label in situ cytotoxicity assay using the fluorescent probes neutral red and BCECF-AM. In Vitro Toxicol. 3(3):219–227; 1990.Google Scholar
  6. 6.
    Fink, K.; Göthert, M. High D-glucose concentrations increase GABA release but inhibit release of norepinephrine and 5-hydroxytryptamine in rat cerebral cortex. Brain Res. 618:220–226; 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Freshney, R. I. Culture of animal cells: a manual of basic technique. Third edition. New York: Wiley-Liss, Inc.; 1994.Google Scholar
  8. 8.
    Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A., et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202:181–192; 1993.PubMedGoogle Scholar
  9. 9.
    Jaffe, E. A.; Nachman, R. L.; Becken, C. G., et al. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52:2745; 1973.PubMedCrossRefGoogle Scholar
  10. 10.
    Lelkes, P. I.; Unsworth, B. R.; Zuniga, R., et al. Altered growth factor receptor levels in hybrid cells derived from adrenomedullary endothelial and parenchymal parental cells. FASEB J. 6:A1295; 1992.Google Scholar
  11. 11.
    Manolopoulos, V. G.; Lelkes, P. I. cyclic strain and forskolin differentially induce cAMP production in phenotypically diverse endothelial cells. Biochem. Biophys. Res. Commun. 191:1379–1385; 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Mizrachi, Y.; Lelkes, P. I.; Ornberg, R. L., et al. Specific adhesion between pheochromocytoma (PC12) cells and adrenal medullary endothelial cells in co-culture. Cell Tissue Res. 256:365–372; 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Mizrachi, Y.; Narranjo, J.; Levi, B.-Z., et al. PC12 cells differentiate into chromaffin cell like phenotype in co-culture with adrenal medullary endothelial cells. Proc. Natl. Acad. Sci. USA 87:6161–6165; 1990.PubMedCrossRefGoogle Scholar
  14. 14.
    Mountcastle, V. B. Medical physiology. 14th edition, St. Louis, MO: C. V. Mosby Co.; 1980.Google Scholar
  15. 15.
    Murayama, T.; Ui, M. Possible involvement of a GTP-binding protein, the substrate of islet-activating protein, in receptor- mediated signaling responsible for cell proliferation. J. Biol. Chem. 262:12463–12467; 1987.PubMedGoogle Scholar
  16. 16.
    Newman, P. J.; Berndt, M. C.; Gorski, J., et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247:1219–1222; 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Nikolaychik, V.; Samet, M. M.; Lelkes, P. I. A new, cryoprecipitate-based coating for improved endothelial cell attachment and growth on medical grade artificial surfaces. ASAIO J. 40:M846-M852; 1994.PubMedGoogle Scholar
  18. 17a.
    Nikolaychik, V.V.; Samet, M.M.; Lelkes, P.I. A new method for continual quantitation of viable cells on endothelialized polyurethanes. J. Biomater. Sci. Polymer Edn. 7:881–891; 199.Google Scholar
  19. 18.
    Nordt, T. K.; Klassen, K. J.; Schneider, D. J., et al. Augmentation of synthesis of plasminogen activator type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler. Thromb. 13:1822–1828; 1993.PubMedGoogle Scholar
  20. 19.
    Ohno, M.; Abe, T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Methods 145:199–203; 1991.PubMedCrossRefGoogle Scholar
  21. 20.
    Pagè, B.; Pagè, M.; Noël, C. A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3:473–476; 1993.Google Scholar
  22. 21.
    Papadimitriou, E.; Lelkes, P. I. Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Methods 162:41–45; 1993.PubMedCrossRefGoogle Scholar
  23. 22.
    Papadimitriou, E.; Unsworth, B. R.; Maragoudakis, M. E., et al. Time-course and quantification of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium 1:207–219; 1993.Google Scholar
  24. 23.
    Prewett, T. L.; Goodwin, T. J.; Spaulding, G. F. Three-dimensional modeling of T-24 human bladder carcinoma cell line: a new simulated microgravity culture vessel. J. Tiss. Cult. Meth. 15:29–36; 1993.CrossRefGoogle Scholar
  25. 24.
    Samet, M. M.; Chick, D. M.; Christensen, C. W., et al. Morphology and integrity of endothelial cell monolayers inside a ventrice-shaped perfusion chamber. ASAIO J. 39:M403-M409; 1993.PubMedCrossRefGoogle Scholar
  26. 25.
    Samet, M. M.; Wankowski, D. M.; Nikolaychik, V., et al. Endothelial cell seeding with rotation of a ventricular blood sac. ASAIO J. 40:M319-M324; 1994.PubMedCrossRefGoogle Scholar
  27. 26.
    Schor, A. M.; Schor, S. L.; Allen, T. D. Effects of culture conditions on the proliferation, morphology and migration of bovine aortic endothelial cells. J. Cell Sci. 62:267–285; 1983.PubMedGoogle Scholar
  28. 27.
    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tiss. Cult. Meth. 14:51–58; 1992.CrossRefGoogle Scholar
  29. 28.
    Tischler, A. S.; Greene, L. A. Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab. Invest. 39:77–89; 1978.PubMedGoogle Scholar
  30. 29.
    Vlodavsky, I.; Fridman, R.; Sullivan, R., et al. Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J. Cell. Physiol. 131:402–408; 1987.PubMedCrossRefGoogle Scholar
  31. 30.
    Vlodavsky, I.; Levi, A.; Lax, I., et al. Induction of cell attachment and morphological differentiation in a pheochromocytoma cell line and embryonal sensory cells by the extracellular matrix. Dev. Biol. 93:285–300; 1982.PubMedCrossRefGoogle Scholar
  32. 31.
    Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.PubMedCrossRefGoogle Scholar
  33. 32.
    Williams, S. K. Isolation and culture of microvessel and large-vessel endothelial cells: their use in transport and clinical studies. In: McDonagh, P. F., ed. Microvascular perfusion and transport in health and disease. Basel, Switzerland: Karger; 1987:204–245.Google Scholar
  34. 33.
    Yu, Z.-X.; Biro, S.; Fu, Y.-M., et al. Localization of basic fibroblast growth factor in bovine endothelial cells: immunohistochemical and biochemical studies. Exp. Cell Res. 204:247–259; 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1997

Authors and Affiliations

  • Peter I. Lelkes
    • 3
  • Esther Ramos
    • 3
  • Victor V. Nikolaychik
    • 3
  • Dawn M. Wankowski
    • 3
  • Brian R. Unsworth
    • 1
  • Thomas J. Goodwin
    • 2
  1. 1.Department of BiologyMarquette UniversityMilwaukee
  2. 2.Biomedical Operations and Research BranchNational Aeronautics and Space Administration, L. B. Johnson Space CenterHouston
  3. 3.Laboratory of Cell BiologyUniversity of Wisconsin Medical School, Milwaukee Clinical Campus, Sinai-Samaritan Medical CenterMilwaukee

Personalised recommendations