Advertisement

Knockout of Atg5 inhibits proliferation and promotes apoptosis of DF-1 cells

  • Zhihong Liao
  • Zhenkai Dai
  • Chenyu Cai
  • Xinheng Zhang
  • Aijun Li
  • Huanmin Zhang
  • Yiming Yan
  • Wencheng Lin
  • Yu Wu
  • Hongxin Li
  • Haiyun Li
  • Qingmei XieEmail author
Article

Abstract

Atg5, as a switch of cell autophagy and apoptosis, plays an important regulatory role in the occurrence and development of autophagy. Atg5 has been reported to involve the autophagy process but little in the apoptotic process. Here, we constructed an Atg5−/− DF-1 cell line using the CRISPR/Cas9 assay and confirmed the significant difference in growth kinetics between Atg5−/− DF-1 cells and wild-type DF-1 cells. Importantly, we found that Atg5 suppresses the cellular proliferation and induce the apoptosis in DF-1 cells by Hoechst’s staining, flow cytometry, and caspase activity assay. All these findings indicated that Atg5 plays an important role in the proliferation of DF-1 cells. On the other hand, we compared the expression of autophagy key proteins LC3 and P62 in Atg5 knockout cells and wild-type cells, and detected the aggregation point distribution of LC3 protein in cells by laser confocal technique; our results showed that Atg5 knockout inhibited autophagy compared with wild-type cells. The present findings further help to resolve the molecular mechanisms regulating Atg5 autophagy and apoptosis.

Keywords

Atg5 CRISPR/CAS9 DF-1 cells Apoptosis Autophagy 

Notes

Authors’ contributions

Zhihong Liao, Haiyun Li, Zhenkai Dai, and Qingmei Xie designed the study, analyzed the results, and revised the manuscript. Chengyu Cai, Xinheng Zhang, Aijun Li, and Huanmin Zhang performed the experiments and wrote the manuscript. Yiming Yan, Wencheng Lin, Yu Wu, and Hongxin Li analyzed the data and prepared figures.

Funding information

This study was supported by a grant from South China Agricultural University, the National Natural Science Foundation of China (Grant Nos. 31672564, 31472217), International Science and technology cooperation project of Guangdong Province (2016A050502042), Construction project of modern agricultural science and technology innovation alliance in Guangdong Province(2017LM1112), and the Natural Science Foundation of Guangdong Province (Grant No. S2013030013313).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11626_2019_342_Fig1_ESM.png (106 kb)
ESM 1

(PNG 105 kb)

11626_2019_342_MOESM1_ESM.tif (6.5 mb)
High Resolution Image (TIF 6660 kb)
11626_2019_342_Fig2_ESM.png (114 kb)
ESM 2

(PNG 114 kb)

11626_2019_342_MOESM2_ESM.tif (6.7 mb)
High Resolution Image (TIF 6817 kb)
11626_2019_342_Fig3_ESM.png (3.7 mb)
ESM 3

(PNG 3740 kb)

11626_2019_342_MOESM3_ESM.tif (13.2 mb)
High Resolution Image (TIF 13545 kb)

References

  1. Alirezaei M, Flynn CT, Whitton JL (2012) Interactions between enteroviruses and autophagy in vivo. Autophagy 8:973–975CrossRefGoogle Scholar
  2. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 3:1025–1040CrossRefGoogle Scholar
  3. Chen B, Sun X, Zhang Y, Zhu XQ, Shen HM (2012) Use of inducible Atg5 deletion and expression cell lines in study of the pro-survival function of autophagy under starvation. Biochem Biophys Res Commun 427:11–17CrossRefGoogle Scholar
  4. Croce CM, Reed JC (2016) An apoptosis-targeting therapeutic for cancer. Cancer Res 76:5914–5920CrossRefGoogle Scholar
  5. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607CrossRefGoogle Scholar
  6. Guevin C, Manna D, Belanger C, Konan KV, Mak P, Labonte P (2010) Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405:1–7CrossRefGoogle Scholar
  7. Heo YT, Quan X, Xu YN, Baek S, Choi H, Kim NH, Kim J (2015) CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev 24:393–402CrossRefGoogle Scholar
  8. Junttila MR, Evan GI (2009) p53--a Jack of all trades but master of none. Nat Rev Cancer 11:821–829CrossRefGoogle Scholar
  9. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clark RSB, Clarke PGH, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Dennis PB, Dennis PA, Demarchi F, Deretic V, Devenish RJ, di Sano F, Dice JF, Distelhorst CW, Dinesh-Kumar SP, Eissa NT, DiFiglia M, Djavaheri-Mergny M, Dorsey FC, Dröge W, Dron M, Dunn JWA, Duszenko M, Elazar Z, Esclatine A, Eskelinen EL, Fésüs L, Finley KD, Fuentes JM, Fueyo-Margareto J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, González-Estévez C, Gorski SM, Gottlieb RA, Häussinger D, He YW, Heidenreich K, Hill JA, Høyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jäättelä M, Jackson WT, Jiang X, Jin SV, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JAKW, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, le W, Lei HY, Levine B, Lieberman AP, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, López-Otín C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Meléndez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Münz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nürnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri IS, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny AA, Silva-Zacarin ECM, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcátegui NL, van der Klei IJ, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Xi Z, Xiao G, Yahalom J, Yang JM, Yap GS, Yin XM, Yoshimori T, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175CrossRefGoogle Scholar
  10. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefGoogle Scholar
  11. Lepine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286:44380–44390CrossRefGoogle Scholar
  12. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 6177:580–584CrossRefGoogle Scholar
  13. Lin P, Bush JA, Cheung KJ, Li G (2002) Tissue-specific regulation of Fas/APO-1/CD95 expression by p53. Int J Oncol 21:261–264Google Scholar
  14. Liu H, Cao W, Li Y, Feng M, Wu X, Yu K (2013) Subgroup J avian leukosis virus infection inhibits autophagy in DF-1 cells. Virol J 10:1–6CrossRefGoogle Scholar
  15. Liu H, Liu C, Zhao Y, Han X, Zhou Z, Wang C, Ll R, Li X (2018) Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agric 17:406–414CrossRefGoogle Scholar
  16. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250CrossRefGoogle Scholar
  17. Maas R, van Zoelen D, Oei H, Claassen I (2006) Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses. Biologicals 34:177–181CrossRefGoogle Scholar
  18. Man N, Tan Y, Sun X, Liu F, Cheng G, Greenblatt SM et al (2017) Caspase-3 controls AML1-ETO driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood 129:2782–2792CrossRefGoogle Scholar
  19. Mansilla S, Priebe W, Portugal J (2006) Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 1:53–60CrossRefGoogle Scholar
  20. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32CrossRefGoogle Scholar
  21. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 15:886–895CrossRefGoogle Scholar
  22. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi BY, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729CrossRefGoogle Scholar
  23. Santarelli R, Granato M, Pentassuglia G, Lacconi V, Gilardini MM, Gonnella R et al (2016) KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression. Autophagy 12:2311–2325CrossRefGoogle Scholar
  24. Shi M, Zhang T, Sun L, Luo Y, Liu DH, Xie ST, Song XY, Wang GF, Chen XL, Zhou BC, Zhang YZ (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18:435–451CrossRefGoogle Scholar
  25. Shimizu S, Kanaseki T, Mizushima N, Mizuta T (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228CrossRefGoogle Scholar
  26. Simon HU, Friis R (2014) ATG5: a distinct role in the nucleus. Autophagy 10:176–177CrossRefGoogle Scholar
  27. Sun S, Zhao G, Liu C, Wu X, Guo Y, Yu H, Song H, du L, Jiang S, Guo R, Tomlinson S, Zhou Y (2013) Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol 49:221–230CrossRefGoogle Scholar
  28. Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol 88:525–537CrossRefGoogle Scholar
  29. Xie K, Tian L, Guo X, Li K, Li J, Deng X, Li Q, Xia Q, Zhong Y, Huang Z, Liu J, Li S, Yang W, Cao Y (2016) BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy 12:381–396CrossRefGoogle Scholar
  30. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132CrossRefGoogle Scholar
  31. Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Zhihong Liao
    • 1
    • 2
  • Zhenkai Dai
    • 1
    • 2
    • 3
  • Chenyu Cai
    • 1
  • Xinheng Zhang
    • 1
    • 2
    • 3
  • Aijun Li
    • 4
  • Huanmin Zhang
    • 5
  • Yiming Yan
    • 1
    • 2
  • Wencheng Lin
    • 1
    • 2
    • 3
  • Yu Wu
    • 1
    • 2
  • Hongxin Li
    • 1
    • 2
    • 3
  • Haiyun Li
    • 1
  • Qingmei Xie
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and ReproductionMinistry of AgricultureGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Animal Health Aquaculture and Environmental ControlGuangzhouPeople’s Republic of China
  3. 3.Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research CenterGuangzhouPeople’s Republic of China
  4. 4.College of science and engineeringJinan UniversityGuangzhouPeople’s Republic of China
  5. 5.Agriculture Research Service, Avian Disease and Oncology LaboratoryUSDAEast LansingUSA

Personalised recommendations