Advertisement

miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A

  • Xiangdong Liu
  • Wenzhong Zhu
  • Lei Wang
  • Jin Wu
  • Feng Ding
  • Yingliang SongEmail author
Article

Abstract

Adipose-derived stem cells (ADSCs) provide a novel method for bone tissue regeneration, but their adipogenic tendency limits their therapeutic efficacy. MicroRNAs (miRNAs) have been reported to regulate stem cell differentiation and bone tissue regeneration, but the detailed mechanism is poorly investigated. Our study indicated that inhibition of miR-145-5p enhanced the osteogenic potential of ADSCs and reduced the adipogenic differentiation. Osteogenesis- and adipogenesis-associated genes were detected by qRT-PCR indicating a corresponding result. Moreover, semaphorin 3A (sema3A) was found to be a target of miR-145-5p, as confirmed by a luciferase activity assay, qRT-PCR, and western blotting. Inhibition of miR-145-5p promoted migration, as detected by wound healing and Transwell assays, but did not affect proliferation, as detected by CCK-8 and ki-67 assays. The effects of miR-145-5p inhibitors on ADSC progression rescued by siRNA of Sema3a and si-sema3a exerted the same effect as miR-145-5p inhibitors on ADSC progression. Furthermore, siRNA of Sema3a rescued synergistic effects with miR-145-5p inhibitors in ADSCs. qRT-PCR and immunofluorescence assays showed that miR-145-5p activated the Wnt signaling pathway for osteogenic differentiation. In conclusion, miR-145-5p and sema3a represent new targets for improving the osteogenic capacity of ADSCs.

Keywords

Adipose-derived stem cells Semaphorin 3A microRNA-145-5p 

Notes

Funding

This study was funded by the Natural Science Foundation of China (NSFC) Nos. 81470775 and 81771107.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11626_2019_318_MOESM1_ESM.docx (283 kb)
ESM 1 (DOCX 283 kb)

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297Google Scholar
  2. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383(6600):525–528.  https://doi.org/10.1038/383525a0 Google Scholar
  3. Boufraqech, M., Zhang, L., Jain, M., Patel, D., Ellis, R., Xiong, Y., . . . Kebebew, E. (2014). miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer, 21(4), 517–531. doi: https://doi.org/10.1530/ERC-14-0077 Google Scholar
  4. Bressan, E., Botticelli, D., Sivolella, S., Bengazi, F., Guazzo, R., Sbricoli, L., . . . Zavan, B. (2015). Adipose-derived stem cells as a tool for dental implant osseointegration: an experimental study in the dog. Int J Mol Cell Med, 4(4), 197–208Google Scholar
  5. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120Google Scholar
  6. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324Google Scholar
  7. Chen D, Li Y, Zhou Z, Xing Y, Yu Z, Zou X et al (2012) Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS One 7(12):e52948Google Scholar
  8. Fang, K., Song, W., Wang, L., Xu, X., Tan, N., Zhang, S., . . . Song, Y. (2016). Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model. Mol Med Rep, 14(3), 2449–2456. doi: https://doi.org/10.3892/mmr.2016.5568 Google Scholar
  9. Fukuda, T., Takeda, S., Xu, R., Ochi, H., Sunamura, S., Sato, T., . . . Itoh, H. (2013). Sema3A regulates bone-mass accrual through sensory innervations. Nature, 497(7450), 490–493. doi: https://doi.org/10.1038/nature12115 Google Scholar
  10. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260.  https://doi.org/10.1161/01.RES.0000265074.83288.09 Google Scholar
  11. Guerrero F, Herencia C, Almadén Y, Martínez-Moreno JM, Montes d OA, Rodriguez-Ortiz ME et al (2014) TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways. PLoS One 9(2):e89179Google Scholar
  12. Hao W, Liu H, Zhou L, Sun Y, Su H, Ni J et al (2018) MiR-145 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells through targeting FoxO1. Exp Biol Med (Maywood) 243(4):386–393.  https://doi.org/10.1177/1535370217746611 Google Scholar
  13. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485(7396):69–74.  https://doi.org/10.1038/nature11000 Google Scholar
  14. Hkh H, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308Google Scholar
  15. Hodges WM, O'Brien F, Fulzele S, Hamrick MW (2017) Function of microRNAs in the osteogenic differentiation and therapeutic application of adipose-derived stem cells (ADSCs). Int J Mol Sci 18(12).  https://doi.org/10.3390/ijms18122597
  16. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587(18):3027–3031Google Scholar
  17. Kang, B. J., Ryu, H. H., Park, S. S., Koyama, Y., Kikuchi, M., Woo, H. M., . . . Kweon, O. K. (2012). Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton's jelly for treating bone defects. J Vet Sci, 13(3), 299–310Google Scholar
  18. Kawasaki T, Bekku Y, Suto F, Kitsukawa T, Taniguchi M, Nagatsu I et al (2002) Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129(3):671–680Google Scholar
  19. Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ et al (2014) miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol 32(6):846–854.  https://doi.org/10.1016/j.urolonc.2014.01.003 Google Scholar
  20. Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV (2016) Regenerative medicine for periodontal and peri-implant diseases. J Dent Res 95(3):255–266.  https://doi.org/10.1177/0022034515618887 Google Scholar
  21. Li KC, Chang YH, Hsu MN, Lo SC, Li WH, Hu YC (2017) Baculovirus-mediated miR-214 knockdown shifts osteoporotic ADSCs differentiation and improves osteoporotic bone defects repair. Sci Rep 7(1):16225.  https://doi.org/10.1038/s41598-017-16547-3 Google Scholar
  22. Liu X, Tan N, Zhou Y, Zhou X, Chen H, Wei H et al (2016) Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo. Stem Cells Int 2016:2545214–2545213.  https://doi.org/10.1155/2016/2545214 Google Scholar
  23. Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38Google Scholar
  24. Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C (2012) NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 369(2):277–285.  https://doi.org/10.1016/j.ydbio.2012.06.026 Google Scholar
  25. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9(6):841–848Google Scholar
  26. Medrano S, Sequeira-Lopez ML, Gomez RA (2014) Deletion of the miR-143/145 cluster leads to hydronephrosis in mice. Am J Pathol 184(12):3226–3238.  https://doi.org/10.1016/j.ajpath.2014.08.012 Google Scholar
  27. Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15(2):200–205.  https://doi.org/10.1016/j.gde.2005.01.002 Google Scholar
  28. Qiao Q, Xu X, Song Y, Song S, Zhu W, Li F (2018) Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 49:369–376.  https://doi.org/10.1007/s10735-018-9776-1 Google Scholar
  29. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544Google Scholar
  30. Shen H, Shen J, Wang L, Shi Z, Wang M, Jiang BH, Shu Y (2015) Low miR-145 expression level is associated with poor pathological differentiation and poor prognosis in non-small cell lung cancer. Biomed Pharmacother 69:301–305.  https://doi.org/10.1016/j.biopha.2014.12.019 Google Scholar
  31. Shen S, Yaqian LU, Zheng Y, Zhang W, & Zhu Q (2017) The study of microRNA-145(miR-145) modulating osteogenesis differentiation of rat bone marrow mesenchymal stem cells (rBMMSC). Stomatology Google Scholar
  32. Toyofuku T, Yoshida J, Sugimoto T, Zhang H, Kumanogoh A, Hori M, Kikutani H (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8(12):1712–1719.  https://doi.org/10.1038/nn1596 Google Scholar
  33. Yokoyama N, Yin D, Malbon C (2007) Abundance, complexation, and trafficking of Wnt/β-catenin signaling elements in response to Wnt3a. J Mol Signal 2(1):1–16Google Scholar
  34. Zaminy A, Ragerdi KI, Barbarestani M, Hedayatpour A, Mahmoudi R, Farzaneh NA (2008) Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Iran Biomed J 12(3):133Google Scholar
  35. Zhao H, Kang X, Xia X, Wo L, Gu X, Hu Y et al (2016) miR-145 suppresses breast cancer cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal transition. Am J Transl Res 8(7):3106–3114Google Scholar
  36. Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21(11):1783–1787.  https://doi.org/10.1091/mbc.E09-07-0589 Google Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Xiangdong Liu
    • 1
  • Wenzhong Zhu
    • 2
  • Lei Wang
    • 1
  • Jin Wu
    • 3
  • Feng Ding
    • 1
  • Yingliang Song
    • 1
    Email author
  1. 1.State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
  2. 2.Department of StomatologySecond People’s Hospital of Shaanxi ProvinceXi’anChina
  3. 3.Dalian Medical UniversityDalianChina

Personalised recommendations