Advertisement

In Vitro Cellular & Developmental Biology - Animal

, Volume 53, Issue 8, pp 744–751 | Cite as

The influence of simulated microgravity on proliferation and apoptosis in U251 glioma cells

  • Jiao Zhao
  • He Ma
  • Leitao Wu
  • Liang Cao
  • Qianqian Yang
  • Haijun Dong
  • Zongren Wang
  • Jing MaEmail author
  • Zhen LiEmail author
Article

Abstract

Several studies have indicated that microgravity can influence cellular progression, proliferation, and apoptosis in tumor cell lines. In this study, we observed that simulated microgravity inhibited proliferation and induced apoptosis in U251 malignant glioma (U251MG) cells. Furthermore, expression of the apoptosis-associated proteins, p21 and insulin-like growth factor binding protein-2 (IGFBP-2), was upregulated and downregulated, respectively, following exposure to simulated microgravity. These findings indicate that simulated microgravity inhibits proliferation while inducing apoptosis of U251MG cells. The associated effects appear to be mediated by inhibition of IGFBP-2 expression and stimulation of p21 expression. This suggests that simulated microgravity might represent a promising method to discover new targets for glioma therapeutic strategy.

Keywords

Simulated microgravity Malignant glioma Apoptosis P21 IGFBP-2 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81273879). We thank Dr. Wen-dong Bai, Dr. Chu-chao Zhu, Dr. Yuan Xing, and Dr. Lu Wang for their expert technical assistance.

References

  1. Bailey JF, Hargens AR, Cheng KK, Lotz JC (2014) Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice. J Biomech 47:2983–2988CrossRefPubMedGoogle Scholar
  2. Blaber E, Sato K, Almeida EA (2014) Stem cell health and tissue regeneration in microgravity. Stem Cells Dev 23(Suppl 1):73–78CrossRefPubMedPubMedCentralGoogle Scholar
  3. Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, Palumbo G (2006) Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Lett 580:2465–2470CrossRefPubMedGoogle Scholar
  4. Dai B, Hu Z, Huang H, Zhu G, Xiao Z, Wan W, Zhang P, Jia W, Zhang L (2014) Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21. Biochem Biophys Res Commun 454:221–227CrossRefPubMedGoogle Scholar
  5. Dong Z, Dang Y, Chen Y (2014) Small double-stranded RNA mediates the anti-cancer effects of p21WAF1/ClP1 transcriptional activation in a human glioma cell line. Yonsei Med J 55:324–330CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fang L, Cheng Q, Zhao J, Ge Y, Zhu Q, Zhao M, Zhang J, Zhang Q, Li L, Liu J, Zheng J (2016) A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer. Oncotarget. doi: 10.18632/oncotarget.10221
  7. Ferranti F, Caruso M, Cammarota M, Masiello MG, Corano Scheri K, Fabrizi C, Fumagalli L, Schiraldi C, Cucina A, Catizone A, Ricci G (2014) Cytoskeleton modifications and autophagy induction in TCam-2 seminoma cells exposed to simulated microgravity. Biomed Res Int 2014:904396CrossRefPubMedPubMedCentralGoogle Scholar
  8. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854CrossRefPubMedGoogle Scholar
  9. Frankel RH, Bayona W, Koslow M, Newcomb EW (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52:1427–1433PubMedGoogle Scholar
  10. Han S, Li Z, Master LM, Master ZW, Wu A (2014) Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer 111:1400–1409CrossRefPubMedPubMedCentralGoogle Scholar
  11. Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jhala DV, Kale RK, Singh RP (2014) Microgravity alters cancer growth and progression. Curr Cancer Drug Targets 14:394–406CrossRefPubMedGoogle Scholar
  13. Karimian A, Ahmadi Y, Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 42:63–71CrossRefGoogle Scholar
  14. Komotar RJ, Otten ML, Moise G, Connolly ES Jr (2008) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma—a critical review. Clin Med Oncol 2:421–422PubMedPubMedCentralGoogle Scholar
  15. Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z (2009) Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma 238:23–33CrossRefPubMedGoogle Scholar
  16. Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH (2016) Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR4 expression and RhoA-ROCK1-p38 MAPK-p53 signaling. Stem Cells Dev 25:1172–1193CrossRefPubMedGoogle Scholar
  17. Lin Y, Jiang T, Zhou K, Xu L, Chen B, Li G, Qiu X, Jiang T, Zhang W, Song SW (2009) Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro-Oncology 11:468–476Google Scholar
  18. McDonald KL, O’Sullivan MG, Parkinson JF, Shaw JM, Payne CA, Brewer JM, Young L, Reader DJ, Wheeler HT, Cook RJ, Biggs MT, Little NS, Teo C, Stone G, Robinson BG (2007) IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J Neuropathol Exp Neurol 66:405–417CrossRefPubMedGoogle Scholar
  19. Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M (2011) Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton 68:125–137CrossRefPubMedGoogle Scholar
  20. Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254CrossRefGoogle Scholar
  21. Miyata S, Urabe M, Gomi A, Nagai M, Yamaguchi T, Tsukahara T, Mizukami H, Kume A, Ozawa K, Watanabe E (2013) An R132H mutation in isocitrate dehydrogenase 1 enhances p21 expression and inhibits phosphorylation of retinoblastoma protein in glioma cells. Neurol Med Chir (Tokyo) 53:645–654CrossRefGoogle Scholar
  22. Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25:5854–5863CrossRefPubMedGoogle Scholar
  23. Patil SS, Gokulnath P, Bashir M, Shwetha SD, Jaiswal J, Shastry AH, Arimappamagan A, Santosh V, Kondaiah P (2016) Insulin-like growth factor binding protein-2 regulates beta-catenin signaling pathway in glioma cells and contributes to poor patient prognosis. Neuro-Oncology 18:1487–1497PubMedGoogle Scholar
  24. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW (2015) Mechanisms regulating glioma invasion. Cancer Lett 362:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  25. Petersen N, Lambrecht G, Scott J, Hirsch N, Stokes M, Mester J (2017) Postflight reconditioning for European astronauts—a case report of recovery after six months in space. Musculoskelet Sci Pract 27(Suppl 1):S23–S31CrossRefPubMedGoogle Scholar
  26. Phillips LM, Zhou X, Cogdell DE, Chua CY, Huisinga A, Hess KR, Fuller GN, Zhang W (2016) Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies. J Pathol 239:355–364CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pickard A, McCance DJ (2015) IGF-binding protein 2—oncogene or tumor suppressor? Front Endocrinol 6:25CrossRefGoogle Scholar
  28. Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, Grimm D (2011) The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med 11:350–364CrossRefPubMedGoogle Scholar
  29. Prives C, Gottifredi V (2008) The p21 and PCNA partnership: a new twist for an old plot. Cell Cycle 7:3840–3846CrossRefPubMedGoogle Scholar
  30. Shi ZX, Rao W, Wang H, Wang ND, Si JW, Zhao J, Li JC, Wang ZR (2015) Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry. Biochem Biophys Res Commun 457:378–384CrossRefPubMedGoogle Scholar
  31. Silvano M, Miele E, Valerio M, Casadei L, Begalli F, Campese AF, Besharat ZM, Alfano V, Abballe L, Catanzaro G (2015) Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response. J Stem Cell Res Ther 5:289–296Google Scholar
  32. Takeda M, Magaki T, Okazaki T, Kawahara Y, Manabe T, Yuge L, Kurisu K (2009) Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci Lett 463:54–59CrossRefPubMedGoogle Scholar
  33. Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A, Westermark B, Niclou SP, Olsen TK, Chekenya Enger M, Bjerkvig R (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3:812–824CrossRefPubMedPubMedCentralGoogle Scholar
  34. Uva BM, Masini MA, Sturla M, Bruzzone F, Giuliani M, Tagliafierro G, Strollo F (2002) Microgravity-induced apoptosis in cultured glial cells. Eur J Histochem 46:209–214CrossRefPubMedGoogle Scholar
  35. Van Ombergen A, Demertzi A, Tomilovskaya E, Jeurissen B, Sijbers J, Kozlovskaya IB, Parizel PM, Van de Heyning PH, Sunaert S, Laureys S, Wuyts FL (2017) The effect of spaceflight and microgravity on the human brain. J Neurol. doi: 10.1007/s00415-017-8427-x
  36. Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Gasset G, Schoevaert D (2003) Weightlessness acts on human breast cancer cell line MCF-7. Adv Space Res 32:1595–1603CrossRefPubMedGoogle Scholar
  37. Wang X, Du J, Wang D, Zeng F, Wei Y, Wang F, Feng C, Li N, Dai R, Deng Y, Quan Z, Qing H (2016) Effects of simulated microgravity on human brain nervous tissue. Neurosci Lett 627:199–204CrossRefPubMedGoogle Scholar
  38. Wang YC, Lu DY, Shi F, Zhang S, Yang CB, Wang B, Cao XS, Du TY, Gao Y, Zhao JD, Sun XQ (2013) Clinorotation enhances autophagy in vascular endothelial cells. Biochem Cell Biol 91:309–314Google Scholar
  39. Wei L, Diao Y, Qi J, Khokhlov A, Feng H, Yan X, Li Y (2013) Effect of change in spindle structure on proliferation inhibition of osteosarcoma cells and osteoblast under simulated microgravity during incubation in rotating bioreactor. PLoS One 8:e76710CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507CrossRefPubMedGoogle Scholar
  41. Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, Liao S, Han Z, Liu R, Zhu T, Wang S, Xu G, Meng L, Zhou J, Ma D (2011) Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer 11:399CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xu H, Wang Z, Jin S, Hao H, Zheng L, Zhou B, Zhang W, Lv H, Yuan Y (2014) Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression. Biochem Biophys Res Commun 446:235–240CrossRefPubMedGoogle Scholar
  43. Zhu M, Jin XW, Wu BY, Nie JL, Li YH (2014) Effects of simulated weightlessness on cellular morphology and biological characteristics of cell lines SGC-7901 and HFE-145. Genet Mol Res 13:6060–6069CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2017

Authors and Affiliations

  • Jiao Zhao
    • 1
  • He Ma
    • 2
  • Leitao Wu
    • 1
  • Liang Cao
    • 1
  • Qianqian Yang
    • 2
  • Haijun Dong
    • 1
  • Zongren Wang
    • 1
  • Jing Ma
    • 1
    Email author
  • Zhen Li
    • 2
    Email author
  1. 1.Department of Traditional Chinese Medicine, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of Histology and EmbryologyFourth Military Medical UniversityXi’anChina

Personalised recommendations