Induction of specific neuron types by overexpression of single transcription factors

  • Yusuke Teratani-Ota
  • Kohei Yamamizu
  • Yulan Piao
  • Lioudmila Sharova
  • Misa Amano
  • Hong Yu
  • David Schlessinger
  • Minoru S. H. Ko
  • Alexei A. SharovEmail author


Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.


GABAergic neurons Dopaminergic neurons Cholinergic neurons Ascl1 ESCs Gene expression profiling miRNA 



This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging, project Z01 AG000656-09. Y.T-O. was funded by Post-Baccalaureate Intramural Research Training Award. K.Y. was supported by the postdoctoral fellowships from the Kanae Foundation, Japan, Uehara Memorial Foundation, Japan, Naito Foundation, Japan, and the Japan Society for Promotion of Science (JSPS). This research was also supported in part by the Japan Science and Technology Agency (JST), CREST program. The authors declare no competing financial interests. Y.T-O., K.Y., Y.P., and L.S. performed experiments; M.A. made new ES clones; H.Y. carried out vector construction for ES clones and synthetic mRNA; D.S. and M.S.H.K supervised the project and edited the manuscript; and A.A.S. performed statistical analysis and wrote the manuscript.

Supplementary material

11626_2016_56_MOESM1_ESM.doc (8.8 mb)
ESM 1 (DOC 9011 kb)


  1. Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D, Bekman E (2009) Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS ONE 4, e6286CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aiba K, Sharov AA, Carter MG, Foroni C, Vescovi AL, Ko MS (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24:889–895CrossRefPubMedGoogle Scholar
  3. Akanuma H, Qin XY, Nagano R, Win-Shwe TT, Imanishi S, Zaha H, Yoshinaga J, Fukuda T, Ohsako S, Sone H (2012) Identification of stage-specific gene expression signatures in response to retinoic acid during the neural differentiation of mouse embryonic stem cells. Front Genet 3:141CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry GJ (2013) The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex 25:631–645CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, Rubenstein JL (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:27–37CrossRefPubMedGoogle Scholar
  6. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124:393–405CrossRefPubMedGoogle Scholar
  7. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10:1813–1819CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001CrossRefPubMedGoogle Scholar
  9. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532CrossRefPubMedGoogle Scholar
  10. Borello U, Madhavan M, Vilinsky I, Faedo A, Pierani A, Rubenstein J, Campbell K (2013) Sp8 and COUP-TF1 reciprocally regulate patterning and Fgf signaling in cortical progenitors. Cereb Cortex 24:1409–1421CrossRefPubMedPubMedCentralGoogle Scholar
  11. Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung KC, Guillemot F, Johnson JE (2014) A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development 141:2803–2812CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burney MJ, Johnston C, Wong KY, Teng SW, Beglopoulos V, Stanton LW, Williams BP, Bithell A, Buckley NJ (2013) An epigenetic signature of developmental potential in neural stem cells and early neurons. Stem Cells 31:1868–1880CrossRefPubMedGoogle Scholar
  13. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227CrossRefPubMedGoogle Scholar
  14. Carter MG, Sharov AA, VanBuren V, Dudekula DB, Carmack CE, Nelson C, Ko MS (2005) Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol 6:R61CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chatzi C, Scott RH, Pu J, Lang B, Nakamoto C, McCaig CD, Shen S (2009) Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells. Exp Neurol 217:407–416CrossRefPubMedGoogle Scholar
  16. Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838CrossRefPubMedPubMedCentralGoogle Scholar
  17. Correa-Cerro LS, Piao Y, Sharov AA, Nishiyama A, Cadet JS, Yu H, Sharova LV, Xin L, Hoang HG, Thomas M, Qian Y, Dudekula DB, Meyers E, Binder BY, Mowrer G, Bassey U, Longo DL, Schlessinger D, Ko MS (2012) Generation of mouse ES cell lines engineered for the forced induction of transcription factors. Sci Rep 1:167Google Scholar
  18. Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110CrossRefPubMedGoogle Scholar
  19. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395CrossRefPubMedGoogle Scholar
  20. Deng T, Zhu ZI, Zhang S, Leng F, Cherukuri S, Hansen L, Marino-Ramirez L, Meshorer E, Landsman D, Bustin M (2013) HMGN1 modulates nucleosome occupancy and DNase I hypersensitivity at the CpG island promoters of embryonic stem cells. Mol Cell Biol 33:3377–3389CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P (2010) Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci 30:1595–1609CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gallardo TD, John GB, Shirley L, Contreras CM, Akbay EA, Haynie JM, Ward SE, Shidler MJ, Castrillon DH (2007) Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Genetics 177:179–194CrossRefPubMedPubMedCentralGoogle Scholar
  23. Halder D, Chang GE, De D, Cheong E, Kim KK, Shin I (2015) Combining suppression of stemness with lineage-specific induction leads to conversion of pluripotent cells into functional neurons. Chem Biol 22:1512–1520CrossRefPubMedGoogle Scholar
  24. He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73:35–48CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huse DM, Schulman K, Orsini L, Castelli-Haley J, Kennedy S, Lenhart G (2005) Burden of illness in Parkinson's disease. Mov Disord 20:1449–1454CrossRefPubMedGoogle Scholar
  26. Illumina (2011) Illumina Human Body Map 2.0 Project. Gene Expression OmnibusGoogle Scholar
  27. Kageyama R, Ishibashi M, Takebayashi K, Tomita K (1997) bHLH transcription factors and mammalian neuronal differentiation. Int J Biochem Cell Biol 29:1389–1399CrossRefPubMedGoogle Scholar
  28. Kim EH, Thu DC, Tippett LJ, Oorschot DE, Hogg VM, Roxburgh R, Synek BJ, Waldvogel HJ, Faull RL (2014) Cortical interneuron loss and symptom heterogeneity in Huntington disease. Ann Neurol 75:717–727CrossRefPubMedGoogle Scholar
  29. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418:50–56CrossRefPubMedGoogle Scholar
  30. Kim SY, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinforma 6:144CrossRefGoogle Scholar
  31. Lindsley RC, Murphy KM (2007) Global gene expression across a range of tissues. Gene Expression OmnibusGoogle Scholar
  32. Mahony S, Mazzoni EO, McCuine S, Young RA, Wichterle H, Gifford DK (2011) Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol 12:R2CrossRefPubMedPubMedCentralGoogle Scholar
  33. Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci U S A 103:2874–2879CrossRefPubMedPubMedCentralGoogle Scholar
  34. Naka H, Nakamura S, Shimazaki T, Okano H (2008) Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11:1014–1023CrossRefPubMedGoogle Scholar
  35. Nishikawa M, Yanagawa N, Yuri S, Hauser P, Jo OD (2013) Effective induction of cells expressing GABAergic neuronal markers from mouse embryonic stem cell. In Vitro Cell Dev Biol Anim 49:479–485CrossRefPubMedGoogle Scholar
  36. Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta S, Yee S, Nakatake Y, Stagg C, Sharova L, Correa-Cerro LS, Bassey U, Hoang H, Kim E, Tapnio R, Qian Y, Dudekula D, Zalzman M, Li M, Falco G, Yang H, Lee S, Monti M, Stanghellini I, Islam MN, Nagaraja R, Goldberg I, Wang W, Longo DL, Schlessinger D, Ko MSH (2009) Uncovering early response of gene regulatory networks in ES cells by systematic induction of transcription factors. Cell Stem Cells 5:420–433CrossRefGoogle Scholar
  37. Ozair MZ, Noggle S, Warmflash A, Krzyspiak JE, Brivanlou AH (2012) SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism. Stem Cells 31:35–47CrossRefGoogle Scholar
  38. Paina S, Garzotto D, DeMarchis S, Marino M, Moiana A, Conti L, Cattaneo E, Perera M, Corte G, Calautti E, Merlo GR (2011) Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 31:2675–2687CrossRefPubMedGoogle Scholar
  39. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M (2007) Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development 134:357–366CrossRefPubMedGoogle Scholar
  41. Potter GB, Petryniak MA, Shevchenko E, McKinsey GL, Ekker M, Rubenstein JL (2009) Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons. Mol Cell Neurosci 40:167–186CrossRefPubMedGoogle Scholar
  42. Reinchisi G, Ijichi K, Glidden N, Jakovcevski I, Zecevic N (2011) COUP-TFII expressing interneurons in human fetal forebrain. Cereb Cortex 22:2820–2830CrossRefPubMedPubMedCentralGoogle Scholar
  43. Riku Y, Atsuta N, Yoshida M, Tatsumi S, Iwasaki Y, Mimuro M, Watanabe H, Ito M, Senda J, Nakamura R, Koike H, Sobue G (2014) Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis. BMJ Open 4, e005213CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rouaux C, Arlotta P (2010) Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 13:1345–1347CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rouaux C, Arlotta P (2013) Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 15:214–221CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scott IC, Anson-Cartwright L, Riley P, Reda D, Cross JC (2000) The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol 20:530–541CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sellers K, Zyka V, Lumsden AG, Delogu A (2014) Transcriptional control of GABAergic neuronal subtype identity in the thalamus. Neural Dev 9:14CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sgado P, Genovesi S, Kalinovsky A, Zunino G, Macchi F, Allegra M, Murenu E, Provenzano G, Tripathi PP, Casarosa S, Joyner AL, Bozzi Y (2013) Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: implications for autism spectrum disorders. Exp Neurol 247:496–505CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sharov AA, Nishiyama A, Piao Y, Correa-Cerro LS, Amano T, Thomas M, Mehta S, Ko MS (2011) Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity. BMC Genomics 12:102CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sharov AA, Schlessinger D, Ko MS (2015) ExAtlas: An interactive online tool for meta-analysis of gene expression data. J Bioinform Comput Biol: 1550019Google Scholar
  51. Sharova LV, Sharov AA, Piao Y, Shaik N, Sullivan T, Stewart CL, Hogan BL, Ko MS (2007) Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains. Dev Biol 307:446–459CrossRefPubMedPubMedCentralGoogle Scholar
  52. Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM (2014) Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS ONE 9, e103696CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sommer L, Shah N, Rao M, Anderson DJ (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15:1245–1258CrossRefPubMedGoogle Scholar
  54. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218CrossRefPubMedPubMedCentralGoogle Scholar
  55. Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689CrossRefPubMedPubMedCentralGoogle Scholar
  56. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99:4465–4470CrossRefPubMedPubMedCentralGoogle Scholar
  57. Su H, Wang L, Huang W, Qin D, Cai J, Yao X, Feng C, Li Z, Wang Y, So KF, Pan G, Wu W, Pei D (2013) Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells. Stem Cell Res 10:338–348CrossRefPubMedGoogle Scholar
  58. Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9:99–107CrossRefPubMedGoogle Scholar
  59. Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C, Ji X, Luo Y (2015) Neuroprotective effect of microRNA-99a against focal cerebral ischemia-reperfusion injury in mice. J Neurol Sci 355:113–119CrossRefPubMedGoogle Scholar
  60. Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N, Granvik M, Lemaire K, Schraenen A, Van Lommel L, Lehnert S, Aguayo-Mazzucato C, Cheng-Xue R, Gilon P, Van Mechelen I, Bonner-Weir S, Lemaigre F, Schuit F (2011) Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res 21:95–105CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tomassy GS, De Leonibus E, Jabaudon D, Lodato S, Alfano C, Mele A, Macklis JD, Studer M (2010) Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc Natl Acad Sci U S A 107:3576–3581CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vasconcelos FF, Castro DS (2014) Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Front Cell Neurosci 8:412CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041CrossRefPubMedPubMedCentralGoogle Scholar
  64. Waddington CH (1957) The strategy of the genes George Allen & Unwin Ltd., LondonGoogle Scholar
  65. Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL (2010) Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci 30:5334–5345CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, Giresi PG, Ng YH, Marro S, Neff NF, Drechsel D, Martynoga B, Castro DS, Webb AE, Sudhof TC, Brunet A, Guillemot F, Chang HY, Wernig M (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635CrossRefPubMedGoogle Scholar
  67. Webb AE, Pollina EA, Vierbuchen T, Urban N, Ucar D, Leeman DS, Martynoga B, Sewak M, Rando TA, Guillemot F, Wernig M, Brunet A (2013) FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 4:477–491CrossRefPubMedGoogle Scholar
  68. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AI (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yamamizu K, Piao Y, Sharov AA, Zsiros V, Yu H, Nakazawa K, Schlessinger D, Ko MS (2013) Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 1:545–559CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yamamizu K, Sharov AA, Piao Y, Amano M, Yu H, Nishiyama A, Dawood BD, Schlessinger D, Ko MSH (2016) Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines. Sci RepGoogle Scholar
  71. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142CrossRefPubMedGoogle Scholar
  73. Zhang Y, De S, Garner JR, Smith K, Wang SA, Becker KG (2010) Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Med Genomics 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhao B, Huang B, Li W, Jin Y (2012) MicroRNA expression profiling during neural differentiation of mouse embryonic carcinoma P19 cells. Methods Mol Biol 936:105–116CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2016

Authors and Affiliations

  • Yusuke Teratani-Ota
    • 1
    • 2
  • Kohei Yamamizu
    • 1
    • 3
  • Yulan Piao
    • 1
  • Lioudmila Sharova
    • 1
  • Misa Amano
    • 1
    • 4
  • Hong Yu
    • 1
    • 4
  • David Schlessinger
    • 1
  • Minoru S. H. Ko
    • 5
  • Alexei A. Sharov
    • 1
    Email author
  1. 1.Laboratory of Genetics, National Institute on AgingNational Institutes of HealthBaltimoreUSA
  2. 2.Department of Psychology, Center for NeuroscienceUC DavisDavisUSA
  3. 3.Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
  4. 4.Elixirgen, LLCBaltimoreUSA
  5. 5.Department of Systems Medicine, Sakaguchi LaboratoryKeio University School of MedicineTokyoJapan

Personalised recommendations