Skip to main content
Log in

Adipogenic potential of stem cells derived from rabbit subcutaneous and visceral adipose tissue in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Rabbits are considered as appropriate animal models to study some obesity-associated abnormalities because of the similarity of their blood lipid profile and metabolism to humans. The current study was focused on comparison of adipose differentiation ability in rabbit adipose-derived stem cells (ADSC) in vitro. Subcutaneous and visceral stromal vascular fractions (SVF) were isolated from three 28-d-old New Zealand rabbits by collagenase digestion. Supernatants from both isolates were collected 24 h after the initial plating. On the fourth passage, all isolated cell types undergo triplicate adipogenic induction. The adipose induction potential was calculated as percentage of increasing optical density (OD) values. The data revealed that with increasing the number of induction cycles, the induction tendency in visceral ADSC decreased in contrast to the subcutaneous ones. Although the supernatants did not reach induction levels of their relevant precursors, they follow the same pattern in both subcutaneous and visceral ADSC. All cell types successfully passed osteogenic and chondrogenic differentiation. In conclusion, the best adipose induction ability was observed in directly plated subcutaneous cell population. The increase of induction numbers depressed adipose induction ability in cell populations derived from visceral fat depots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aguilera CM, Ramirez-Tortosa MC, Mesa MD, Ramirez-Tortosa CL, Gil A (2002) Sunflower, virgin-olive and fish oils differentially affect the progression of aortic lesions in rabbits with experimental atherosclerosis. Atherosclerosis 162:335–344

    Article  CAS  PubMed  Google Scholar 

  • Ailhaud G (2006) Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol 329(8):570–577

    Article  CAS  PubMed  Google Scholar 

  • Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R (2004) The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. J Biol Chem 279(11):10070–10076

    Article  CAS  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa T, Fujinaga T (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol 32:502–509

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253. doi:10.1007/s00441-004-1012-5

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648. doi:10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275(49):38486–38493

    Article  CAS  PubMed  Google Scholar 

  • Buschmann J, Gao S, Härter L, Hemmi S, Welti M, Werner CM, Calcagni M, Cinelli P, Wanner GA (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions. Cytotherapy 15(9):1098–1105. doi:10.1016/j.jcyt.2013.04.009, Epub 2013 Jun 22

  • Caprio M, Fève B, Claës A, Viengchareun S, Lombès M, Zennaro MC (2007) Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 21:2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Cawthorn WP, Scheller EL, MacDougald OA (2012) Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 53:227–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Vincent LG, Lee AR, Dobke MK, Engler AJ (2012) Mechanical derivation of functional myotubes from adiposederived stem cells. Biomaterials 33:2482–2491

    Article  CAS  PubMed  Google Scholar 

  • Djian P, Roncari AK, Hollenberg CH (1983) Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest 72:1200–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson MV, Mir PS, Hausman GJ, Guan LL, Du M, Jiang Z, Fernyhough ME, Bergen WG (2011) Obesity, Metabolic Syndrome, and Adipocytes. Journal of Lipids, Article ID 721686, doi:10.1155/2011/721686

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiev IP, Georgieva TM, Ivanov V, Dimitrova S, Kanelov I, Vlaykova T, Tanev S, Zaprianova D, Dichlianova E, Penchev G, Lazarov L, Vachkova E, Roussenov A (2011) Effects of castration-induced visceral obesity and antioxidant treatment on lipid profile and insulin sensitivity in New Zealand white rabbits. Res Vet Sci 90(2):196–204. doi:10.1016/j.rvsc.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  • Gorczynski RM (2012) CD200:CD200R-mediated regulation of immunity. ISRN Immunol 2012:1–18. doi:10.5402/2012/682168

    Article  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  • Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, Koh GY (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115:957–964

    Article  CAS  PubMed  Google Scholar 

  • Hausman GJ, Dodson MV (2012) Stromal vascular cells and adipogenesis: cells within adipose depots regulate adipogenesis. J Genom 1:56–66. doi:10.7150/jgen.3813

    Article  Google Scholar 

  • Katz AJ (2002) Mesenchymal cell culture: adipose tissue. Atala A & Lanza R, editors. Methods of Tissue Engineering. Academic Press, 277–286

  • Klemm DJ, Leitner JW, Watson P, Nesterova A, Jane E, Reusch B, Goalstone ML, Draznin B (2001) Insulin-induced adipocyte differentiation: activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 276:28430–28435

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF (2010) Defining adipose tissue-derived stem cells in tissue and in culture. A perivascular origin for mesenchymal stem cells in multiple human organs. Histol Histopathol 25(6):807–815

    PubMed  Google Scholar 

  • Lowe CE, O’Rahilly S, Rochford JJ (2011) Adipogenesis at a glance. J Cell Sci 124:2681–2686. doi:10.1242/jcs.079699

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222. doi:10.1002/jcp.21304

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose derived cells: temporal changes in stromal—and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  • Miyazaki T, Kitagawa Y, Toriyama K, Kobori M, Torii S (2005) Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation 73:69–78. doi:10.1111/j.1432-0436.2005.07302004

    Article  CAS  PubMed  Google Scholar 

  • Monaco E, Bionaz M, Hollister SJ, Wheeler MB (2011) Strategies for regeneration of the bone using porcine adultadipose-derived mesenchymal stem cells. Theriogenology 75:1381–1399

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Fernández-Real JM (2012) Adipocyte differentiation. In: Symonds ME (ed) Adipose tissue biology. Springer Science + Business Media, New York, pp 17–38. doi:10.1007/978-1-4614-0965-6_2

    Chapter  Google Scholar 

  • Nobusue H, Endo T, Kano K (2008) Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332:435–446

    Article  CAS  PubMed  Google Scholar 

  • Ong WK, Tan CS, Chan KL, Goesantoso GG, Chan XH, Chan E, Yin J, Yeo CR, Khoo CM, So JB, Shabbir A, Toh SA, Han W, Sugii S (2014) Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral Fat depots. Stem Cell Rep 2(2):171–179. doi:10.1016/j.stemcr.2014.01.002

    Article  CAS  Google Scholar 

  • Perrini S, Ficarella R, Picardi E, Cignarelli A, Barbaro M, Nigro P, Peschechera A, Palumbo O, Carella M, De Fazio M, Natalicchio A, Laviola L, Pesole G, Giorgino F (2013) Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS ONE 8(3):57892. doi:10.1371/journal.pone.0057892

    Article  Google Scholar 

  • Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. PNAS 105(22):7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyne Y, Nouguès J, Dulor JP (1989) Differentiation of rabbit adipocyte precursor cells in a serum-free medium. In Vitro Cell Dev Biol 25:747–752

    Article  CAS  PubMed  Google Scholar 

  • Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  CAS  PubMed  Google Scholar 

  • Shen JF, Sugawara A, Yamashita J, Ogura H, Sato S (2011) Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci 3(3):117–124. doi:10.4248/IJOS11044

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugihara H, Yonemitsu N, Miyabara S, Yun K (1986) Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31:42–49

    Article  CAS  PubMed  Google Scholar 

  • Sunay O, Can G, Cakir Z, Denek Z, Kozanoglu I, Erbil G, Yilmaz M, Baran Y (2013) Autologous rabbit adipose tissue-derived mesenchymal stromal cells for the treatment of bone injuries with distraction osteogenesis. Cytotherapy 15(6):690–702

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Swanson LV, Hu CY (1997) Insulin and hydro- cortisone, but not triiodothyronine, are required for the differentia tion of pig preadipocytes in primary culture. J Anim Sci 75:105–111

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White Fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586. doi:10.1126/science.1156232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran T, Kahn C (2010) Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 6(4):195–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Vignozzi L, Morelli A, Filippi S, Comeglio P, Chavalmane AK, Marchetta M, Toce M, Yehiely-Cohen R, Vannelli GB, Adorini L, Maggi M (2011) Farnesoid X receptor activation improves erectile function in animal models of metabolic syndrome and diabetes. J Sex Med 8:57–77

    Article  CAS  PubMed  Google Scholar 

  • Viswakarma N, Yu S, Naik S, Kashireddy P, Matsumoto K, Sarkar J, Surapureddi S, Jia Y, Rao MS, Reddy JK (2007) Transcriptional regulation of Cidea, mitochondrial cell death-inducing DNA fragmentation factor alpha-like effector a, in mouse liver by peroxisome proliferatoractivated receptor alpha and gamma. J Biol Chem 282(25):18613–18624

    Article  CAS  PubMed  Google Scholar 

  • Wozniak SE, Gee LL, Wachtel MS, Frezza EE (2009) Adipose tissue: the new endocrine organ? A review article. Digest Dis Sci 54(9):1847–1856

    Article  PubMed  Google Scholar 

  • Yang XF, He X, He J, Zhang LH, Su XJ, Dong ZX, Xu YJ, Li Y, Li YL (2011a) High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J Biomed Sci 18:59 (b)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang MT, Fu J, Wang Y, Desai RA, Chen CS (2011b) Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc 6:187–213. doi:10.1038/nprot.2010.189

    Article  CAS  PubMed  Google Scholar 

  • Yanni AE (2004) The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim 38:246–256

    Article  CAS  PubMed  Google Scholar 

  • Yonkova P (2014) Morphological investigations on fat depots in New Zealand white rabbits. PhD Thesis, Stara Zagora

  • Zheng B, Cao B, Li G, Huard J (2006) Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12:1891–1901

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Project 4/13 within Trakia University-FVM; Short Term Scientific Mission within COST Action TD1101-RGB-Net—Dr. Darko Bosnakovski; Central Scientific and Research Laboratory, Trakia University; and Boyana Rashkova—student in Trakia University-FVM, are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Vachkova.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachkova, E., Bosnakovski, D., Yonkova, P. et al. Adipogenic potential of stem cells derived from rabbit subcutaneous and visceral adipose tissue in vitro. In Vitro Cell.Dev.Biol.-Animal 52, 829–837 (2016). https://doi.org/10.1007/s11626-016-0048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0048-7

Keywords

Navigation