Advertisement

Establishment of oct4:egfp transgenic and oct4:egfp /β-actin:DsRed double transgenic medaka lines

  • Shinpei Yokota
  • Rinta Matsuno
  • Hiroyuki Kato
  • Hisashi Hashimoto
  • Masato Kinoshita
  • Hayato Yokoi
  • Tohru SuzukiEmail author
Article

Abstract

As a model to examine cellular multipotency in fish, we established a medaka transgenic (Tg) Tru.oct4:egfp line carrying the green fluorescence protein (GFP) cDNA under control of the Takifugu rubripes oct4 promoter. In this Tg line, GFP could be used to examine both maternal and zygotic oct4 expression during embryogenesis. In addition, while adult Tg fish did not express GFP in any somatic cells, activation of GFP expression was initiated in regenerating fins after amputation. In vitro, some of the cell populations that migrated from fin explants expressed GFP, implying that GFP could be used to monitor oct4 expression in both embryos and in regenerating tissues in the Tru.oct4:egfp Tg line. Next, crossing with β-actin:DsRed Tg line in which all cells emit red fluorescence by expression of red fluorescent protein (RFP) under the β-actin promoter, we prepared a Tru.oct4:egfp /β-actin:DsRed double Tg line. In the double Tg line, early embryonic cells were +GFP/+RFP double positive. In vitro fin cell culture, a small number of +GFP/+RFP double positive cells could be discriminated from other −GFP/+RFP cells. Thus, when transplanted into wild-type medaka, this double Tg line can be used to trace the fate of the transplanted cells using RFP fluorescence after the loss of GFP expression.

Keywords

Transgenic fish Medaka oct4 GFP RFP Embryo Fin regeneration 

Notes

Acknowledgments

We thank the National BioResource Project NBRP Medaka for kindly providing medaka strains, d-rR and Tg(β-actin:DsRed). We also thank Dr Joachim Wittbrodt for kindly providing the I-SceI vector. This research was supported by Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan to TS (Chosenteki-Hoga: 25660151, Kiban-B: 26292110), to HY (Kiban C: 15K07571) and by The Towa Foundation for Food Research.

References

  1. Cao H, Yang P, Pu Y, Sun X, Yin H, Zhang Y, Zhang Y, Li Y, Liu Y, Fang F, Zhang Z, Tao Y, Zhang X (2012) Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 8:498–511CrossRefPubMedPubMedCentralGoogle Scholar
  2. Christen B, Robles V, Raya M, Paramonov I, Izpisua Belmonte JC (2010) Regeneration and reprogramming compared. BMC Biol 8:5CrossRefPubMedPubMedCentralGoogle Scholar
  3. Hawkins K, Joy S, McKay T (2014) Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 6:620–8CrossRefPubMedPubMedCentralGoogle Scholar
  4. Iwamatsu T (1994) Stages of normal development in the medaka Oryzias-latipes. Zool Sci 11:825–839Google Scholar
  5. Jowett T, Yan YL (1996) Double fluorescent in situ hybridization to zebrafish embryos. Trends Genet 12:387–9CrossRefPubMedGoogle Scholar
  6. Kato H, Abe K, Yokota S, Matsuno R, Mikekado T, Yokoi H, Suzuki T (2015) Establishment of oct4:gfp transgenic zebrafish line for monitoring cellular multipotency by GFP fluorescence. In Vitro Cell Dev Biol Anim 51:42–9CrossRefPubMedGoogle Scholar
  7. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–9CrossRefPubMedGoogle Scholar
  8. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefPubMedGoogle Scholar
  9. Marlow FL, Mullins MC (2008) Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 321:40–50CrossRefPubMedPubMedCentralGoogle Scholar
  10. Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 49:145–54CrossRefPubMedGoogle Scholar
  11. Ohbo K, Yoshida S, Ohmura M, Ohneda O, Ogawa T, Tsuchiya H, Kuwana T, Kehler J, Abe K, Scholer HR, Suda T (2003) Identification and characterization of stem cells in prepubertal spermatogenesis in mice small star, filled. Dev Biol 258:209–25CrossRefPubMedGoogle Scholar
  12. Parvin MS, Okuyama N, Inoue F, Islam ME, Kawakami A, Takeda H, Yamasu K (2008) Autoregulatory loop and retinoic acid repression regulate pou2/pou5f1 gene expression in the zebrafish embryonic brain. Dev Dyn 237:1373–88CrossRefPubMedGoogle Scholar
  13. Poss KD, Shen J, Keating MT (2000) Induction of lef1 during zebrafish fin regeneration. Dev Dyn 219:282–6CrossRefPubMedGoogle Scholar
  14. Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1:1133–9CrossRefPubMedGoogle Scholar
  15. Rodriguez-Mari A, Canestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH (2013) Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS ONE 8, e73951CrossRefPubMedPubMedCentralGoogle Scholar
  16. Rossello RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED (2013) Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. Elife 2, e00036CrossRefPubMedPubMedCentralGoogle Scholar
  17. Sanchez-Sanchez AV, Camp E, Garcia-Espana A, Leal-Tassias A, Mullor JL (2010) Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Dev Dyn 239:672–9CrossRefPubMedGoogle Scholar
  18. Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K (2014) Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep 6:482–98CrossRefPubMedPubMedCentralGoogle Scholar
  19. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76CrossRefPubMedGoogle Scholar
  20. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–8CrossRefPubMedGoogle Scholar
  21. Wehner D, Cizelsky W, Vasudevaro MD, Ozhan G, Haase C, Kagermeier-Schenk B, Roder A, Dorsky RI, Moro E, Argenton F, Kuhl M, Weidinger G (2014) Wnt/beta-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep 6:467–81CrossRefPubMedGoogle Scholar
  22. Yoshimizu T, Sugiyama N, De Felice M, Yeom YI, Ohbo K, Masuko K, Obinata M, Abe K, Scholer HR, Matsui Y (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 41:675–84CrossRefPubMedGoogle Scholar
  23. Yoshinari N, Ando K, Kudo A, Kinoshita M, Kawakami A (2012) Colored medaka and zebrafish: transgenics with ubiquitous and strong transgene expression driven by the medaka beta-actin promoter. Dev Growth Differ 54:818–28CrossRefPubMedGoogle Scholar
  24. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–20CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2016

Authors and Affiliations

  • Shinpei Yokota
    • 1
  • Rinta Matsuno
    • 1
  • Hiroyuki Kato
    • 1
  • Hisashi Hashimoto
    • 3
  • Masato Kinoshita
    • 2
  • Hayato Yokoi
    • 1
  • Tohru Suzuki
    • 1
    Email author
  1. 1.Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.Division of Applied Bioscience, Graduate School of AgricultureKyoto UniversityKyotoJapan
  3. 3.Bioscience and Biotechnology CenterNagoya UniversityNagoyaJapan

Personalised recommendations