In Vitro Cellular & Developmental Biology - Animal

, Volume 51, Issue 10, pp 1012–1022 | Cite as

Characterization of canine dental pulp cells and their neuroregenerative potential

  • Eiji Naito
  • Daichi Kudo
  • Shin-ichiro Sekine
  • Kazuhiro Watanabe
  • Yui Kobatake
  • Naritaka Tamaoki
  • Masatoshi Inden
  • Kazuki Iida
  • Yusuke Ito
  • Isao Hozumi
  • Toshiyuki Shibata
  • Sadatoshi Maeda
  • Hiroaki Kamishina
Article

Abstract

Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.

Keywords

Dental pulp cells Mesenchymal stem cells Neurotrophic factors Neurite outgrowth Superparamagnetic iron oxide 

References

  1. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Goebel WS (2010) Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4:73–81PubMedCentralPubMedGoogle Scholar
  2. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846CrossRefPubMedGoogle Scholar
  3. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795CrossRefPubMedGoogle Scholar
  4. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95:3908–3913PubMedCentralCrossRefPubMedGoogle Scholar
  5. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46:219–228CrossRefPubMedGoogle Scholar
  6. Belliveau DJ, Krivko I, Kohn J, Lachance C, Pozniak C, Rusakov D, Kaplan D, Miller FD (1997) NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J Cell Biol 136:375–388PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bratka-Robia CB, Mitteregger G, Aichinger A, Egerbacher M, Helmreich M, Bamberg E (2002) Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts. Vet Dermatol 13:1–6CrossRefPubMedGoogle Scholar
  8. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 9:1641–1653PubMedCentralPubMedGoogle Scholar
  9. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749CrossRefPubMedGoogle Scholar
  10. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309CrossRefPubMedGoogle Scholar
  11. Clary DO, Reichardt LF (1994) An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response toneurotrophin 3. Proc Natl Acad Sci U S A 91:11133–11137PubMedCentralCrossRefPubMedGoogle Scholar
  12. de Almeida FM, Marques SA, Ramalho BS, Rodrigues RF, Cadilhe DV, Furtado D, Kerkis I, Pereira LV, Rehen SK, Martinez AM (2011) Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma 28:1939–1949CrossRefPubMedGoogle Scholar
  13. Dissanayaka WL, Zhu X, Zhang C, Jin L (2011) Characterization of dental pulp stem cells isolated from canine premolars. J Endod 37:1074–1080CrossRefPubMedGoogle Scholar
  14. Ellis KM, O’Carroll DC, Lewis MD, Rychkov GY, Koblar SA (2014) Neurogenic potential of dental pulp stem cells isolated from murine incisors. Stem Cell Res Ther 5:30PubMedCentralCrossRefPubMedGoogle Scholar
  15. Encinas M, Iglesias M, Llecha N, Comella JX (1999) Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73:1409–1421CrossRefPubMedGoogle Scholar
  16. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630PubMedCentralCrossRefPubMedGoogle Scholar
  17. Himmelreich U, Dresselaers T (2009) Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48:112–124CrossRefPubMedGoogle Scholar
  18. Hu SL, Zhang JQ, Hu X, Hu R, Luo HS, Li F, Xia YZ, Li JT, Lin JK, Zhu G, Feng H (2009) In vitro labeling of human umbilical cord mesenchymal stem cells with superparamagnetic iron oxide nanoparticles. J Cell Biochem 108:529–535CrossRefPubMedGoogle Scholar
  19. Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M, Yancopoulos GD (1993) Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 10:137–149CrossRefPubMedGoogle Scholar
  20. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312CrossRefPubMedGoogle Scholar
  21. Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243CrossRefPubMedGoogle Scholar
  22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMedGoogle Scholar
  23. Jones BJ, McTaggar SJ (2008) Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp Hematol 36:733–741CrossRefPubMedGoogle Scholar
  24. Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM (2006) Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 67:1921–1928CrossRefPubMedGoogle Scholar
  25. Karussis D, Kassis I, Kurkalli BG, Slavin S (2008) Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 265:131–135CrossRefPubMedGoogle Scholar
  26. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301CrossRefPubMedGoogle Scholar
  27. Király M, Porcsalmy B, Pataki A, Kádár K, Jelitai M, Molnár B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55:323–332CrossRefPubMedGoogle Scholar
  28. Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381CrossRefPubMedGoogle Scholar
  29. Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, Yamazaki H (2012) Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 7, e46436PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255CrossRefPubMedGoogle Scholar
  31. Levy YS, Gilgun-Sherki Y, Melamed E, Offen D (2005) Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 19:97–127CrossRefPubMedGoogle Scholar
  32. Lillesaar C, Eriksson C, Fried K (2001) Rat tooth pulp cells elicit neurite growth from trigeminal neurones and express mRNAs for neurotrophic factors in vitro. Neurosci Lett 308:161–164CrossRefPubMedGoogle Scholar
  33. Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K, Simmet T (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31:5063–5071CrossRefPubMedGoogle Scholar
  34. Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I (2013) Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 17:1969–1983CrossRefPubMedGoogle Scholar
  35. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556CrossRefPubMedGoogle Scholar
  36. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9, e109305PubMedCentralCrossRefPubMedGoogle Scholar
  37. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812PubMedCentralCrossRefPubMedGoogle Scholar
  38. Mohiuddin L, Fernandez K, Tomlinson DR, Fernyhough P (1995) Nerve growth factor and neurotrophin-3 enhance neurite outgrowth and up-regulate the levels of messenger RNA for growth-associated protein GAP-43 and T alpha 1 alpha-tubulin in cultured adult rat sensory neurones. Neurosci Lett 185:20–23CrossRefPubMedGoogle Scholar
  39. Morfini G, DiTella MC, Feiguin F, Carri N, Cáceres A (1994) Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons. J Neurosci Res 39:219–232CrossRefPubMedGoogle Scholar
  40. Nosrat CA, Fried K, Lindskog S, Olson L (1997) Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res 290:569–580CrossRefPubMedGoogle Scholar
  41. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132CrossRefPubMedGoogle Scholar
  42. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19:2388–2398CrossRefPubMedGoogle Scholar
  43. Omidkhoda A, Mozdarani H, Movasaghpoor A, Fatholah AA (2007) Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay. Toxicol In Vitro 21:1191–1196CrossRefPubMedGoogle Scholar
  44. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  45. Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938:231–233Google Scholar
  46. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90PubMedCentralPubMedGoogle Scholar
  47. Schäfer R, Bantleon R, Kehlbach R, Siegel G, Wiskirchen J, Wolburg H, Kluba T, Eibofner F, Northoff H, Claussen CD, Schlemmer HP (2010) Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biol 11:22PubMedCentralCrossRefPubMedGoogle Scholar
  48. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94:8948–8953PubMedCentralCrossRefPubMedGoogle Scholar
  49. Strohmaier C, Carter BD, Urfer R, Barde YA, Dechant G (1996) A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J 15:3332–3337PubMedCentralPubMedGoogle Scholar
  50. Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambricht I, Himmelreich U (2013) Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant 22:1813–1829CrossRefPubMedGoogle Scholar
  51. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98CrossRefPubMedGoogle Scholar
  52. Tsoulfas P, Soppet D, Escandon E, Tessarollo L, Mendoza-Ramirez JL, Rosenthal A, Nikolics K, Parada LF (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron 10:975–990CrossRefPubMedGoogle Scholar
  53. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416CrossRefPubMedGoogle Scholar
  54. Wang X, Wei F, Liu A, Wang L, Wang JC, Ren L, Liu W, Tu Q, Li L, Wang J (2012) Cancer stem cell labeling using poly(L-lysine)-modified iron oxide nanoparticles. Biomaterials 33:3719–3732CrossRefPubMedGoogle Scholar
  55. Yang JX, Tang WL, Wang XX (2010) Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy 12:251–259CrossRefPubMedGoogle Scholar
  56. Zhu MT, Wang Y, Feng WY, Wang B, Wang M, Ouyang H, Chai ZF (2010) Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol 10:8584–8590CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2015

Authors and Affiliations

  • Eiji Naito
    • 1
  • Daichi Kudo
    • 2
  • Shin-ichiro Sekine
    • 2
  • Kazuhiro Watanabe
    • 1
  • Yui Kobatake
    • 1
  • Naritaka Tamaoki
    • 3
  • Masatoshi Inden
    • 2
  • Kazuki Iida
    • 3
  • Yusuke Ito
    • 1
  • Isao Hozumi
    • 2
  • Toshiyuki Shibata
    • 3
  • Sadatoshi Maeda
    • 1
  • Hiroaki Kamishina
    • 1
  1. 1.Department of Veterinary Medicine, Faculty Applied Biological SciencesGifu UniversityGifuJapan
  2. 2.Laboratory of Medical Therapeutics and Molecular TherapeuticsGifu Pharmaceutical UniversityGifuJapan
  3. 3.Department of Oral and Maxillofacial Surgery, Graduate School of MedicineGifu UniversityGifuJapan

Personalised recommendations