In vitro evaluation of the effects of human umbilical cord extracts on human fibroblasts, keratinocytes, and melanocytes

  • Phuc Van PhamEmail author
  • Loan Thi-Tung Dang
  • Uyen Thanh Dinh
  • Huyen Thi-Thu Truong
  • Ba Ngoc Huynh
  • Dong Van Le
  • Ngoc Kim Phan


Skin aging is the result of internal and external factors. So-called photoaging has been identified as the major factor in skin aging. Effects of photoaging include inhibition of fibroblast and keratinocyte proliferation as well as collagen and fibronectin expression, while activating expression of collagenases such as matrix metalloproteinase-1. Previous studies have shown that extracts or products from human placenta significantly improve skin aging and chronic wound healing. However, there are few studies of umbilical cord extracts. Therefore, this study aimed to evaluate the effects of umbilical cord extract-derived formulae on three kinds of skin cells including fibroblasts, keratinocytes, and melanocytes. We prepared 20 formulae from intracellular umbilical cord extracts, extracellular umbilical cord extracts, and umbilical cord-derived stem cell extracts, as well as five control formulae. We evaluated the effects of the 25 formulae on fibroblast and keratinocyte proliferation, and expression of collagen I, fibronectin, and matrix metalloproteinase-1 in fibroblasts and tyrosinase in melanocytes. The results showed that 7.5% formula 35 was the most effective formula for promotion of fibroblast and keratinocyte proliferation. At this concentration, formula 35 also induced collagen expression and inhibited matrix metalloproteinase-1 expression at the transcriptional level. However, this formula had no effect on tyrosinase expression in melanocytes. These results demonstrate that umbilical cord extracts can serve as an attractive source of proteins for skincare and chronic wound healing products.


Fibroblast Keratinocyte Melanocyte Skin aging Umbilical cord extract 


  1. Agar N.; Young A. R. Melanogenesis: a photoprotective response to DNA damage? Mutat. Res. 571: 121–132; 2005.PubMedCrossRefGoogle Scholar
  2. Alvares O.; Klebe R.; Grant G.; Cochran D. L. Growth factor effects on the expression of collagenase and TIMP-1 in periodontal ligament cells. J. Periodontol. 66: 552–558; 1995.PubMedCrossRefGoogle Scholar
  3. Angel P.; Szabowski A.; Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20: 2413–2423; 2001.PubMedCrossRefGoogle Scholar
  4. Blumenberg M. Profiling and meta-analysis of epidermal keratinocytes responses to epidermal growth factor. BMC Genomics 14: 85; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cho H. R.; Ryou J. H.; Lee J. W.; Lee M. H. The effects of placental extract on fibroblast proliferation. J. Cosmet. Sci. 59: 195–202; 2008.PubMedGoogle Scholar
  6. Chung K. Y.; Agarwal A.; Uitto J.; Mauviel A. An AP-1 binding sequence is essential for regulation of the human alpha2(I) collagen (COL1A2) promoter activity by transforming growth factor-beta. J. Biol. Chem. 271: 3272–3278; 1996.PubMedCrossRefGoogle Scholar
  7. Claudinot S.; Nicolas M.; Oshima H.; Rochat A.; Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 102: 14677–14682; 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Datta P.; Bhattacharyya D. Spectroscopic and chromatographic evidences of NADPH in human placental extract used as wound healer. J. Pharm. Biomed. Anal. 34: 1091–1098; 2004.PubMedCrossRefGoogle Scholar
  9. De D.; Datta Chakraborty P.; Mitra J.; Sharma K.; Mandal S.; Das A.; Chakrabarti S.; Bhattacharyya D. Ubiquitin-like protein from human placental extract exhibits collagenase activity. PloS One 8: e59585; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dorronsoro A.; Robbins P. D. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res. Ther. 4: 39; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fisher G. J.; Datta S.; Wang Z.; Li X. Y.; Quan T.; Chung J. H.; Kang S.; Voorhees J. J. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J. Clin. Invest. 106: 663–670; 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fisher G. J.; Talwar H. S.; Lin J.; Lin P.; McPhillips F.; Wang Z.; Li X.; Wan Y.; Kang S.; Voorhees J. J. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J. Clin. Invest. 101: 1432–1440; 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Garrington T. P.; Johnson G. L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11: 211–218; 1999.PubMedCrossRefGoogle Scholar
  14. Gonzalez R.; Griparic L.; Umana M.; Burgee K.; Vargas V.; Nasrallah R.; Silva F.; Patel A. An efficient approach to isolation and characterization of pre- and postnatal umbilical cord lining stem cells for clinical applications. Cell Transplant. 19: 1439–1449; 2010.PubMedCrossRefGoogle Scholar
  15. Grichnik J. M.; Ali W. N.; Burch J. A.; Byers J. D.; Garcia C. A.; Clark R. E.; Shea C. R. KIT expression reveals a population of precursor melanocytes in human skin. J. Invest. Dermatol. 106: 967–971; 1996.PubMedCrossRefGoogle Scholar
  16. Hao H.; Chen G.; Liu J.; Ti D.; Zhao Y.; Xu S.; Fu X.; Han W. Culturing on Wharton’s jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. PloS One 8: e58314; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hong J. W.; Lee W. J.; Hahn S. B.; Kim B. J.; Lew D. H. The effect of human placenta extract in a wound healing model. Ann. Plast. Surg. 65: 96–100; 2010.PubMedCrossRefGoogle Scholar
  18. Hornebeck W. Down-regulation of tissue inhibitor of matrix metalloprotease-1 (TIMP-1) in aged human skin contributes to matrix degradation and impaired cell growth and survival. Pathologie-biologie 51: 569–573; 2003.PubMedCrossRefGoogle Scholar
  19. Ito M.; Liu Y.; Yang Z.; Nguyen J.; Liang F.; Morris R. J.; Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11: 1351–1354; 2005.PubMedCrossRefGoogle Scholar
  20. Ito M.; Yang Z.; Andl T.; Cui C.; Kim N.; Millar S. E.; Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447: 316–320; 2007.PubMedCrossRefGoogle Scholar
  21. Jo C. H.; Kim O. S.; Park E. Y.; Kim B. J.; Lee J. H.; Kang S. B.; Lee J. H.; Han H. S.; Rhee S. H.; Yoon K. S. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res. 334: 423–433; 2008.PubMedCrossRefGoogle Scholar
  22. Karin M.; Liu Z.; Zandi E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9: 240–246; 1997.PubMedCrossRefGoogle Scholar
  23. Kawakatsu M.; Urata Y.; Goto S.; Ono Y.; Li T. S. Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity. J. Radiat. Res. 54: 268–276; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kim J. H.; Jung M.; Kim H. S.; Kim Y. M.; Choi E. H. Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp. Dermatol. 20: 383–387; 2011.PubMedCrossRefGoogle Scholar
  25. Kim W. S.; Park B. S.; Sung J. H.; Yang J. M.; Park S. B.; Kwak S. J.; Park J. S. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48: 15–24; 2007.PubMedCrossRefGoogle Scholar
  26. Kim Y. S.; Park J. J.; Sakoda Y.; Zhao Y.; Hisamichi K.; Kaku T.; Tamada K. Preventive and therapeutic potential of placental extract in contact hypersensitivity. Int. Immunopharmacol. 10: 1177–1184; 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kisselbach L.; Merges M.; Bossie A.; Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology 59: 31–44; 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kita K.; Gauglitz G. G.; Phan T. T.; Herndon D. N.; Jeschke M. G. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 19: 491–502; 2010.PubMedCrossRefGoogle Scholar
  29. Lee K. H.; Kim T. H.; Lee W. C.; Kim S. H.; Lee S. Y.; Lee S. M. Anti-inflammatory and analgesic effects of human placenta extract. Nat. Prod. Res. 25: 1090–1100; 2011.PubMedCrossRefGoogle Scholar
  30. Mallick S.; Singh S. K.; Sarkar C.; Saha B.; Bhadra R. Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and its related proteins in vitro. Pigment cell research/sponsored by the European Society for Pigment Cell Research and the International. Pigment Cell Soc. 18: 25–33; 2005.CrossRefGoogle Scholar
  31. Massague J. How cells read TGF-beta signals. Nat. Rev. Mol. Cell Biol. 1: 169–178; 2000.PubMedCrossRefGoogle Scholar
  32. Meyer M.; Muller A. K.; Yang J.; Moik D.; Ponzio G.; Ornitz D. M.; Grose R.; Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J. Cell Sci. 125: 5690–5701; 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Montanucci P.; Basta G.; Pescara T.; Pennoni I.; Di Giovanni F.; Calafiore R. New simple and rapid method for purification of mesenchymal stem cells from the human umbilical cord Wharton jelly. Tissue Eng. A 17: 2651–2661; 2011.CrossRefGoogle Scholar
  34. Nath S.; Bhattacharyya D. Cell adhesion by aqueous extract of human placenta used as wound healer. Indian J. Exp. Biol. 45: 732–738; 2007.PubMedGoogle Scholar
  35. Norris A.; Todd C.; Graham A.; Quinn A. G.; Thody A. J. The expression of the c-kit receptor by epidermal melanocytes may be reduced in vitiligo. Br. J. Dermatol. 134: 299–306; 1996.PubMedCrossRefGoogle Scholar
  36. O’Keefe E. J.; Payne R. E.; Russell N. Keratinocyte growth-promoting activity from human placenta. J. Cell. Physiol. 124: 439–445; 1985.PubMedCrossRefGoogle Scholar
  37. Pal P.; Mallick S.; Mandal S. K.; Das M.; Dutta A. K.; Datta P. K.; Bera R.; Bhadra R. A human placental extract: in vivo and in vitro assessments of its melanocyte growth and pigment-inducing activities. Int. J. Dermatol. 41: 760–767; 2002.PubMedCrossRefGoogle Scholar
  38. Phuc P. V.; Nhung T. H.; Loan D. T.; Chung D. C.; Ngoc P. K. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell. Dev. Biol. Anim. 47: 54–63; 2011.PubMedCrossRefGoogle Scholar
  39. Quan T.; He T.; Voorhees J. J.; Fisher G. J. Ultraviolet irradiation blocks cellular responses to transforming growth factor-beta by down-regulating its type-II receptor and inducing Smad7. J. Biol. Chem. 276: 26349–26356; 2001.PubMedCrossRefGoogle Scholar
  40. Redondo P.; Garcia-Foncillas J.; Okroujnov I.; de Felipe I.; Quintanilla E. CD24 expression on human keratinocytes. Exp. Dermatol. 7: 175–178; 1998.PubMedCrossRefGoogle Scholar
  41. Reinisalo M.; Putula J.; Mannermaa E.; Urtti A.; Honkakoski P. Regulation of the human tyrosinase gene in retinal pigment epithelium cells: the significance of transcription factor orthodenticle homeobox 2 and its polymorphic binding site. Mol. Vis. 18: 38–54; 2012.PubMedCentralPubMedGoogle Scholar
  42. Reza H. M.; Ng B. Y.; Gimeno F. L.; Phan T. T.; Ang L. P. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev. 7: 935–947; 2011a.PubMedCrossRefGoogle Scholar
  43. Reza H. M.; Ng B. Y.; Phan T. T.; Tan D. T.; Beuerman R. W.; Ang L. P. Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev. 7: 624–638; 2011b.PubMedCrossRefGoogle Scholar
  44. Rittie L.; Fisher G. J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 1: 705–720; 2002.PubMedCrossRefGoogle Scholar
  45. Saha B.; Singh S. K.; Sarkar C.; Mallick S.; Bera R.; Bhadra R. Transcriptional activation of tyrosinase gene by human placental sphingolipid. Glycoconj. J. 23: 259–268; 2006.PubMedCrossRefGoogle Scholar
  46. Salehinejad P.; Alitheen N. B.; Ali A. M.; Omar A. R.; Mohit M.; Janzamin E.; Samani F. S.; Torshizi Z.; Nematollahi-Mahani S. N. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell. Dev. Biol. Anim. 48: 75–83; 2012.PubMedCrossRefGoogle Scholar
  47. Sarkar C.; Singh S. K.; Mandal S. K.; Saha B.; Bera R.; Ratha J.; Datta P. K.; Bhadra R. Human placental protein/peptides stimulate melanin synthesis by enhancing tyrosinase gene expression. Mol. Cell. Biochem. 285: 133–142; 2006.PubMedCrossRefGoogle Scholar
  48. Shukla V. K.; Rasheed M. A.; Kumar M.; Gupta S. K.; Pandey S. S. A trial to determine the role of placental extract in the treatment of chronic non-healing wounds. J. Wound Care 13: 177–179; 2004.PubMedGoogle Scholar
  49. Singh S. K.; Sarkar C.; Mallick S.; Saha B.; Bera R.; Bhadra R. Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment cell research/sponsored by the European Society for Pigment Cell Research and the International. Pigment Cell Soc. 18: 113–121; 2005.CrossRefGoogle Scholar
  50. Sobolewski K.; Malkowski A.; Bankowski E.; Jaworski S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta 26: 747–752; 2005.PubMedCrossRefGoogle Scholar
  51. Song S. Y.; Jung J. E.; Jeon Y. R.; Tark K. C.; Lew D. H. Determination of adipose-derived stem cell application on photo-aged fibroblasts, based on paracrine function. Cytotherapy 13: 378–384; 2011.PubMedCrossRefGoogle Scholar
  52. Sternlicht M. D.; Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17: 463–516; 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tiwary S. K.; Shukla D.; Tripathi A. K.; Agrawal S.; Singh M. K.; Shukla V. K. Effect of placental-extract gel and cream on non-healing wounds. J. Wound Care 15: 325–328; 2006.PubMedGoogle Scholar
  54. Togashi S.; Takahashi N.; Iwama M.; Watanabe S.; Tamagawa K.; Fukui T. Antioxidative collagen-derived peptides in human-placenta extract. Placenta 23: 497–502; 2002.PubMedCrossRefGoogle Scholar
  55. Tong C. K.; Vellasamy S.; Tan B. C.; Abdullah M.; Vidyadaran S.; Seow H. F.; Ramasamy R. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 35: 221–226; 2011.PubMedCrossRefGoogle Scholar
  56. Welker P.; Schadendorf D.; Artuc M.; Grabbe J.; Henz B. M. Expression of SCF splice variants in human melanocytes and melanoma cell lines: potential prognostic implications. Br. J. Cancer 82: 1453–1458; 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Xiao L.; Du Y.; Shen Y.; He Y.; Zhao H.; Li Z. TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front. Biosci. 17: 2667–2674; 2012.CrossRefGoogle Scholar
  58. Yu D.; Sun X.; Fang S.; Cao Z.; Meng K.; Ding Y. Validation of endothelial progenitor cells in human umbilical veins and the isolated endothelial cells. Endothelium 14: 141–150; 2007.PubMedCrossRefGoogle Scholar
  59. Zhang H.; Zhang B.; Tao Y.; Cheng M.; Hu J.; Xu M.; Chen H. Isolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach. Cell Biochem. Funct. 30: 643–649; 2012.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Phuc Van Pham
    • 1
    Email author
  • Loan Thi-Tung Dang
    • 1
  • Uyen Thanh Dinh
    • 2
  • Huyen Thi-Thu Truong
    • 2
  • Ba Ngoc Huynh
    • 2
  • Dong Van Le
    • 2
    • 3
  • Ngoc Kim Phan
    • 1
  1. 1.Laboratory of Stem Cell Research and Application, University of ScienceVietnam National UniversityHo Chi Minh CityVietnam
  2. 2.Mekostem BankMekophar Chemical Pharmaceutical Joint-Stock CompanyHo Chi MinhVietnam
  3. 3.Department of ImmunologyVietnam Military Medical UniversityHa NoiVietnam

Personalised recommendations