Ovalbumin enhances YKL-40, IL-5, GM-CSF, and eotaxin expression simultaneously in primarily cultured mouse tracheal epithelial cells

  • Su-qin Ben
  • Ya-li Qiu
  • Juan Zhou
  • Xiao-yu Zhou
  • Shan Zhang
  • Yi Wu
  • Shao-qing Ju
  • Song-shi Ni


Epithelial inflammation and eosinophil infiltration are crucial for the pathogenesis of asthma. Many inflammatory mediators, such as YKL-40, interleukin −5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and eotaxin, are important for the development of allergic airway inflammation. This study is aimed at investigating the impact of treatment with ovalbumin (OVA) on the levels of those inflammatory mediators in primarily cultured mouse tracheal epithelial cells. Mouse tracheal epithelial cells were isolated and identified by immunofluorescent staining; the isolated mouse tracheal epithelial cells expressed cytokeratins. Treatment with OVA for 24 or 48 h significantly increased the relative levels of YKL-40, IL-5, GM-CSF, and eotaxin mRNA transcripts and YKL-40, IL-5, GM-CSF, and eotaxin proteins secreted in the supernatants of cultured cells, as compared with that in the untreated control cells (P < 0.01, P < 0.05, respectively). The levels of YKL-40 expression were correlated positively with the levels of IL-5, GM-CSF, and eotaxin expression in the OVA-treated cells. These data indicated that treatment with OVA simultaneously enhanced YKL-40, IL-5, GM-CSF, and eotaxin expression in the cultured mouse tracheal epithelial cells in vitro. These inflammatory mediators may synergistically contribute to the pathogenesis of allergic inflammation, and this study may help to understand the role of YKL-40 in the pathogenesis of asthma.


Tracheal epithelial cells Eotaxin GM-CSF IL-5 YKL-40 



This work was supported by the National Natural Science Foundation of China (no. 30971306), the project of “Six Peaks of Talents” sponsored by Jiangsu Province (2011-WS-060), and Science and Technology Program of Nantong Government (HS 2011010).


  1. Akuthota P.; Weller P. F. Eosinophils and disease pathogenesis. Seminars in hematology 49: 113–119; 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allakhverdi Z.; Comeau M. R.; Smith D. E.; Toy D.; Endam L. M.; Desrosiers M.; Liu Y. J.; Howie K. J.; Denburg J. A.; Gauvreau G. M.; Delespesse G. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 123: 472–478; 2009.PubMedCrossRefGoogle Scholar
  3. Allakhverdi Z.; Delespesse G. Hematopoietic progenitor cells are innate Th2 cytokine-producing cells. Allergy 67: 4–9; 2012.PubMedCrossRefGoogle Scholar
  4. Ben S.; Li X.; Xu F.; Xu W.; Li W.; Wu Z.; Huang H.; Shi H.; Shen H. Treatment with anti-CC chemokine receptor 3 monoclonal antibody or dexamethasone inhibits the migration and differentiation of bone marrow CD34 progenitor cells in an allergic mouse model. Allergy 63: 1164–1176; 2008.PubMedCrossRefGoogle Scholar
  5. Bussink A. P.; Speijer D.; Aerts J. M.; Boot R. G. Evolution of mammalian chitinase (−like) members of family 18 glycosyl hydrolases. Genetics 177: 959–970; 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chupp G. L.; Lee C. G.; Jarjour N.; Shim Y. M.; Holm C. T.; He S.; Dziura J. D.; Reed J.; Coyle A. J.; Kiener P.; Cullen M.; Grandsaigne M.; Dombret M. C.; Aubier M.; Pretolani M.; Elias J. A. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 357: 2016–2027; 2007.PubMedCrossRefGoogle Scholar
  7. Davidson D. J.; Kilanowski F. M.; Randell S. H.; Sheppard D. N.; Dorin J. R. A primary culture model of differentiated murine tracheal epithelium. Am J Physiol Lung Cell Mol Physiol 279: L766–778; 2000.PubMedGoogle Scholar
  8. Fahy J. V.; Locksley R. M. The airway epithelium as a regulator of Th2 responses in asthma. Am J Respir Crit Care Med 184: 390–392; 2011.PubMedCrossRefGoogle Scholar
  9. Finkelman F. D.; Hogan S. P.; Hershey G. K.; Rothenberg M. E.; Wills-Karp M. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 184: 1663–1674; 2010.PubMedCrossRefGoogle Scholar
  10. Fortin M.; Wagner J. G.; Brault J.; Harkema J. R.; Renzi P. M.; Paquet L.; Ferrari N. Spatial and temporal expression of CCR3 and the common beta chain of the IL-3, IL-5, and GM-CSF receptor in the nasal epithelium and lymphoid tissues in a rat model of allergic rhinitis. Cytokine 52: 194–202; 2010.PubMedCrossRefGoogle Scholar
  11. Funkhouser J. D.; Aronson Jr. N. N. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7: 96; 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gong J. H.; Shin D.; Han S. Y.; Kim J. L.; Kang Y. H. Kaempferol suppresses eosinophil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr 142: 47–56; 2012.PubMedCrossRefGoogle Scholar
  13. Hamid Q.; Tulic M. Immunobiology of asthma. Annual review of physiology 71: 489–507; 2009.PubMedCrossRefGoogle Scholar
  14. Holgate S. T. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 242: 205–219; 2011.PubMedCrossRefGoogle Scholar
  15. Holgate S. T.; Roberts G.; Arshad H. S.; Howarth P. H.; Davies D. E. The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proc Am Thorac Soc 6: 655–659; 2009.PubMedCrossRefGoogle Scholar
  16. Kawada M.; Hachiya Y.; Arihiro A.; Mizoguchi E. Role of mammalian chitinases in inflammatory conditions. Keio J Med 56: 21–27; 2007.PubMedCrossRefGoogle Scholar
  17. Kouro T.; Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. International immunology 21: 1303–1309; 2009.PubMedCrossRefGoogle Scholar
  18. Kucur M.; Isman F. K.; Karadag B.; Vural V. A.; Tavsanoglu S. Serum YKL-40 levels in patients with coronary artery disease. Coron Artery Dis 18: 391–396; 2007.PubMedCrossRefGoogle Scholar
  19. Lambrecht B. N.; Hammad H. The airway epithelium in asthma. Nat Med 18: 684–692; 2012.PubMedCrossRefGoogle Scholar
  20. Lee C. G.; Da Silva C. A.; Dela Cruz C. S.; Ahangari F.; Ma B.; Kang M. J.; He C. H.; Takyar S.; Elias J. A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual review of physiology 73: 479–501; 2011.PubMedCrossRefGoogle Scholar
  21. Lee C. G.; Elias J. A. Role of breast regression protein-39/YKL-40 in asthma and allergic responses. Allergy Asthma Immunol Res 2: 20–27; 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mir-Kasimov M.; Sturrock A.; McManus M.; Paine 3rd R. Effect of alveolar epithelial cell plasticity on the regulation of GM-CSF expression. Am J Physiol Lung Cell Mol Physiol 302: L504–511; 2012.PubMedCrossRefGoogle Scholar
  23. Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology 130: 398–411; 2006.PubMedCrossRefGoogle Scholar
  24. Molfino N. A. Targeting of eosinophils in asthma. Expert opinion on biological therapy 12: 807–809; 2012.PubMedCrossRefGoogle Scholar
  25. Nakagome K.; Nagata M. Pathogenesis of airway inflammation in bronchial asthma. Auris, nasus, larynx 38: 555–563; 2011.PubMedCrossRefGoogle Scholar
  26. Ober C.; Tan Z.; Sun Y.; Possick J. D.; Pan L.; Nicolae R.; Radford S.; Parry R. R.; Heinzmann A.; Deichmann K. A.; Lester L. A.; Gern J. E.; Lemanske Jr. R. F.; Nicolae D. L.; Elias J. A.; Chupp G. L. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med 358: 1682–1691; 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Okamoto M.; Matsuda H.; Joetham A.; Lucas J. J.; Domenico J.; Yasutomo K.; Takeda K.; Gelfand E. W. Jagged1 on dendritic cells and Notch on CD4+ T cells initiate lung allergic responsiveness by inducing IL-4 production. J Immunol 183: 2995–3003; 2009.PubMedCrossRefGoogle Scholar
  28. Petsky H. L.; Cates C. J.; Lasserson T. J.; Li A. M.; Turner C.; Kynaston J. A.; Chang A. B. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax 67: 199–208; 2012.PubMedCrossRefGoogle Scholar
  29. Reese T. A.; Liang H. E.; Tager A. M.; Luster A. D.; Van Rooijen N.; Voehringer D.; Locksley R. M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447: 92–96; 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Specjalski K.; Jassem E. YKL-40 protein is a marker of asthma. J Asthma 48: 767–772; 2011.PubMedCrossRefGoogle Scholar
  31. Wu H.; Suzuki T.; Carey B.; Trapnell B. C.; McCormack F. X. Keratinocyte growth factor augments pulmonary innate immunity through epithelium-driven. GM-CSF-dependent paracrine activation of alveolar macrophages. J Biol Chem 286: 14932–14940; 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Zhou L.; Kawate T.; Liu X.; Kim Y. B.; Zhao Y.; Feng G.; Banerji J.; Nash H.; Whitehurst C.; Jindal S.; Siddiqui A.; Seed B.; Wolfe J. L. STAT6 phosphorylation inhibitors block eotaxin-3 secretion in bronchial epithelial cells. Bioorganic & medicinal chemistry 20: 750–758; 2012.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  1. 1.Department of Respiratory DiseaseThe First People’s Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Respiratory DiseaseThe Affiliated Hospital of Nantong UniversityNantongChina
  3. 3.Department of Surgical Comprehensive LaboratoryThe Affiliated Hospital of Nantong UniversityNantongChina

Personalised recommendations