Establishing midgut cell culture from Rhynchophorus ferrugineus (Olivier) and toxicity assessment against ten different insecticides

  • Ahmed Mohammed Aljabr
  • Muhammad Rizwan-ul-Haq
  • Abid Hussain
  • Abdullah I. Al-Mubarak
  • Hassan Y. AL-Ayied


Midgut epithelial cell culture was successfully developed from red palm weevil (Rhynchophorus ferrugineus) during this study and named as RPW-1. Optimum conditions for four different commercial media were also worked out to successfully maintain the culture. Grace’s medium was found to be the most effective for RPW-1 culturing which resulted in the highest cell density of 7.5 × 106 cells/ml after 72 h of cell seeding with 96% cell viability. It was followed by Schneider’s medium and TNM-FH medium where cell densities reached up to 7.4 × 106 and 5.9 × 106 cells/ml, respectively, after 72 h having 91 and 89% cell viability. Comparatively, Media-199 was least effective for RPW-1 cell culturing. As a whole, temperature at 27°C and pH 6.3 were the best for RPW-1 culturing where the highest cell density and maximum cell viability were noted. Individually, Grace’s medium, Schneider’s medium, TNM-FH medium, and Media-199 produced better results at 27°C, 27°C, 24°C, and 21°C and pH 6.3, 6.4, 5.3, and 7.1, respectively. The toxicity assay and MTT cell proliferation assay revealed that, out of the ten insecticides used in this study, emamectin benzoate was the most toxic insecticide to RPW-1 cells resulting in 92% cell mortality and 74% cell growth inhibition. Dieldrin was the least potent, causing only 19% cell mortality and 18% cell growth inhibition.


Midgut cell culture Rhynchophorus ferrugineus Insecticidal toxicity MTT assay 



The authors gratefully acknowledge the role of King Abdul Aziz City of Science and Technology (KACST) for providing research funding under the grant no. 08-BIO 10-6 to conduct this study.


  1. Al-Ayedh H. Y. Evaluating a semi-synthetic diet for rearing the red palm weevil Rynchophorus ferrugineus (Coleoptera: Curculionidae). Int. J. Trop. Insect. Sci. 31: 20–28; 2011.CrossRefGoogle Scholar
  2. Alford D. V. Pest and disease management handbook. British crop protection enterprises. Blackwell Science Ltd, Oxford, p 615; 2000.CrossRefGoogle Scholar
  3. Casartelli M.; Cermenati G.; Rodighiero S.; Pennacchio F.; Giordana B. A megalin like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). Am. J. Physiol. 295: 1290–1300; 2008.Google Scholar
  4. Cermenati G.; Corti P.; Caccia S.; Giordana B.; Casartelli M. A morphological and functional characterization of Bombyx mori larval midgut cells in culture. Invert. Surv. J. 4: 119–126; 2007.Google Scholar
  5. Corley L. S.; Lavine M. D. A review of insec stem cell types. Semin. Cell. Dev. Biol. 17: 510–517; 2006.PubMedCrossRefGoogle Scholar
  6. Decombel L.; Smagghe G.; Tirry L. Action of major insecticide groups on insect cell lines of the beet armyworm, Spodoptera exigua, compared with larvicidal toxicity. In. Vitro. Cell. Dev. Biol. -Animal. 40: 43–51; 2004.CrossRefGoogle Scholar
  7. Faleiro J. R. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int. J. Trop. Insect. Sci. 26: 135–154; 2006.Google Scholar
  8. Grasela J. J.; McIntosh A. H.; Ringbauer J. J.; Goodman C. L.; Carpenter J. E.; Popham H. J. Development of cell lines from the cactophagous insect: Cactoblastis cactorum (Lepidoptera: Pyralidae) and their susceptibility to three baculoviruses. In. Vitro. Cell Dev. Biol. - Animal. 48: 293–300; 2012.CrossRefGoogle Scholar
  9. Grimm C.; Schmidli H.; Bakker F.; Brown K.; Campbell P.; Candol W. M.; Chapman P.; Harrison E. G.; Mead-Briggs M.; Schmuck R.; Ufer A. Use of standard toxicity tests with Typhlodromus pyri and Aphidius rhopalosiphi to establish a dose–response relationship. J. Pest. Sci. 74: 72–84; 2001.Google Scholar
  10. Hakim R. S.; Baldwin K. M.; Loeb M. The role of stem cells in midgut growth and regeneration. In. Vitro. Cell Dev. Biol. - Animal. 37: 338–42; 2001.Google Scholar
  11. Hakim R. S.; Blackburn M. B.; Corti P.; Gelman D. B.; Goodman C.; Elsen K.; Loeb M. J.; Lynn D.; Soin T.; Smagghe G. Growth and mitogenic effects of arylphorin in vivo and in vitro. Arch. Insect. Biochem. Physiol. 64: 63–73; 2007.PubMedCrossRefGoogle Scholar
  12. Hakim R. S.; Cacci S.; Loeb M.; Smagghe G. Primary culture of insect midgut cells. In. Vitro. Cell Dev. Biol. - Animal. 45: 106–110; 2009.CrossRefGoogle Scholar
  13. Hall G. M.; Tittiger C.; Andrews G. L.; Mastick G. S.; Kuenzli M.; Luo X.; Seybold S. J.; Blomquist G. J. Midgut tissue of male pine engraver lps pini, synthesizes mono terpenoid pheromone component ipsdienol de novo. Naturwissenschaflen. 89: 79–83; 2002a.CrossRefGoogle Scholar
  14. Hall G. M.; Tittiger C.; Btomquist G. J.; Andrews G. B.; Mastick G. S.; Barkawi L. S.; Bengoa C.; Seybold S. J. Male Jeffrey pine beetle, Dendroctonus jeffreyi, synthesizes the pheromone component frontalin in anterior midgut tissue. Insect. Biochem. Mol. Biol. 32: 1525–1532; 2002b.PubMedCrossRefGoogle Scholar
  15. Hild H. M.; Emery A. N.; AL-Rubeat M. The effect of pH, temperature, serum concentration and media composition on the growth of insect cells. In: Vlak J. M.; Schlaeger E. J.; Bernard A. R. (eds) Baculovirus and recombinant protein production processes. Editiones Roche, Basel, pp 316–321; 1992.Google Scholar
  16. Hink W. F. Semi-continuous culture of the TN-368 cell line in fermenters with virus production in harvested cells. In: Kurstak E.; Maramorosch K.; Dubendrofer A. (eds) Invertebrate System In Vitro. Elsevier, Holland, pp 27–33; 1982.Google Scholar
  17. Huang J. F.; Shui K. J.; Li H. Y.; Hu M. Y.; Zhong G. H. Antiproliferative effect of azadirachtin A on Spodoptera litura Sl-1 cell line through cell cycle arrest and apoptosis induced by up-regulation of p53. Pestic. Biochem. Physiol. 99: 16–24; 2011a.CrossRefGoogle Scholar
  18. Huang J. F.; Tian M.; Lv C. J.; Li H. Y.; Muhammad R.; Zhong G. H. Preliminary studies on induction of apoptosis by abamectin in Spodoptera frugiperda (Sf9) cell line. Pestic. Biochem. Physiol. 100: 256–263; 2011b.CrossRefGoogle Scholar
  19. Kurtti T. J.; Munderloh U. G. Mosquito cell culture. In: Maramorosch K. (ed) Advances in cell culture, vol. 3. Academic, New York, p 259; 1984.Google Scholar
  20. Li L.; Xie T. Stem cell niche: structure and function. Annu. Rev. Cell. Dev. Biol. 21: 605–31; 2005.PubMedCrossRefGoogle Scholar
  21. Loeb M. J.; Clark E. A.; Blackburn M.; Hakim R. Z.; Elsen K.; Smagghe G. Stem cells from midgets of lepidopteran larvae: clues to the regulation of stem cell fate. Arch. Insect. Biochem. Physiol. 53: 186–98; 2003.PubMedCrossRefGoogle Scholar
  22. Lynn D. E. Novel techniques to establish new insect cell lines. In. Vitro. Cell. Dev. Biol. -Animal. 37: 319–321; 2001.CrossRefGoogle Scholar
  23. Mahmoud M. A.; Saad A. A.; Ibrahim A. B. In vivo toxicity of Beta-cyfluthrin insecticide against the red palm weevil Rhynchophorus ferrugineus (Olivier). J. Agr. Sci. Tech. A. 2: 1322–1331; 2012.Google Scholar
  24. Nandi A.; Chandi D.; Lechesa R.; Pryor S. C.; Mclaughlin A.; Bonventre J. A.; Flynn K.; Weeks B. S. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration. Med. Sci. Monit. 12: 169–173; 2006.Google Scholar
  25. Nardi J. B.; Young A. G.; Ujhelyi E.; Tittiger C.; Lehane M. J.; Blomquist G. J. Specialization of midgut cells for synthesis of male isoprenoid pheromone components in two scolytid beetles, Dendroctonus jeffreyi and Ips pini. Tissue. Cell. 34: 221–231; 2002.PubMedCrossRefGoogle Scholar
  26. Oh H.; Livingston R.; Smith K.; Abrishamian G. L. Comparative study of the time dependency of cell death assays. M.U.R.J. 11: 53–62; 2004.Google Scholar
  27. Saito S.; Sakamoto N.; Umeda K. Effects of pyridalyl, a novel insecticidal agent, on cultured Sf9 cells. J. Pestic. Sci. 30: 17–21; 2005.CrossRefGoogle Scholar
  28. SAS. SAS user’s guide: statistics. SAS Institute, Cary; 2000.Google Scholar
  29. Shao H. C.; Hong L. S.; Zuo H. L. Effect of temperature oscillation on insect cell growth and baculovirus replication. Appl. Environ. Microbiol. 64: 2237–2239; 1998.Google Scholar
  30. Smagghe G.; Goodman C. L.; Stanley D. Insect cell culture and applications to research and pest management. In. Vitro. Cell Dev. Biol. - Animal. 45: 93–105; 2009.CrossRefGoogle Scholar
  31. Smagghe G.; Vanhassel W.; Moeremans C.; de Wilde D.; Goto S.; Loeb M. J.; Blackburn M. B.; Hakim R. S. Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann. NY. Acad. Sci. 1040: 472–475; 2005.PubMedCrossRefGoogle Scholar
  32. Sohi S. S. The effect of pH and osmotic pressure on the growth and survival of three lepidopteran cell lines. In: Kurstak E.; Maramorosch K.; Dubendorfer A. (eds) Invertebrate systems in vitro. Elsevier, North Holland, pp 35–43; 1980.Google Scholar
  33. Sonoda S.; Tsumuki H. Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae. Pestic. Biochem. Physiol. 89: 185–189; 2007.CrossRefGoogle Scholar
  34. Ware G. W.; Nigg H. N.; Doerge D. R. Reviews of environmental contamination and toxicology, vol. 176. Springer, New York, p 184; 2003.Google Scholar
  35. Yoon J. Y.; Oh S. H.; Yoo S. M.; Lee S. J.; Lee H. S.; Choi S. J.; Moon C. K.; Lee B. H. N-Nitrosocarbofuran, but carbofuran, induces apoptosis and cell cycle arrest in CHL cells. Toxicology. 169: 153–161; 2001.PubMedCrossRefGoogle Scholar
  36. Young H. E.; Black Jr. A. C. Adult stem cells. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 276: 75–102; 2004.PubMedCrossRefGoogle Scholar
  37. Zhong G. H.; Shui K. J.; Huang J. F.; Jia J. W.; Hu M. Y. Induction of apoptosis by botanical components in Spodoptera litura cultured cell line. Acta. Entomol. Sin. 51: 449–453; 2008.Google Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Ahmed Mohammed Aljabr
    • 1
  • Muhammad Rizwan-ul-Haq
    • 1
  • Abid Hussain
    • 1
  • Abdullah I. Al-Mubarak
    • 2
  • Hassan Y. AL-Ayied
    • 3
  1. 1.Department of Arid Land Agriculture, College of Agriculture and Food SciencesKing Faisal UniversityHofufSaudi Arabia
  2. 2.Department of Microbiology and Parasitology, College of Veterinary Medicine and Animal ResourcesKing Faisal UniversityHofufSaudi Arabia
  3. 3.Natural Resources and Environment Research Institute (NRERI)King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia

Personalised recommendations