Advertisement

Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system

  • Kyoung Ah Kang
  • Mei Jing Piao
  • Ki Cheon Kim
  • Ji Won Cha
  • Jian Zheng
  • Cheng Wen Yao
  • Sungwook Chae
  • Jin Won HyunEmail author
Article

Abstract

Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.

Keywords

Fisetin Reactive oxygen species Cell damage Reduced glutathione 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2010042).

References

  1. Ahlenstiel T.; Burkhardt G.; Köhler H.; Kuhlmann M. K. Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in Euro-Collins and University of Wisconsin solutions. Kidney Int. 63: 554–563; 2003.PubMedCrossRefGoogle Scholar
  2. Arai Y.; Watanabe S.; Kimira M.; Shimoi K.; Mochizuki R.; Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130: 2243–2250; 2000.PubMedGoogle Scholar
  3. Beecher G. R. Overview of dietary flavonoids: nomenclature, occurrence and intake. J. Nutr. 133: 3248S–3254S; 2003.PubMedGoogle Scholar
  4. Beutler E. Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 9: 287–302; 1989.PubMedCrossRefGoogle Scholar
  5. Carmichael J.; DeGraff W. G.; Gazdar A. F.; Minna J. D.; Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936–941; 1987.PubMedGoogle Scholar
  6. Chamberlain C. G.; Mansfield K. J.; Cerra A. Glutathione and catalase suppress TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial explants. Mol. Vis. 15: 895–905; 2009.PubMedGoogle Scholar
  7. Chevez-Barrios P.; Wiseman A. L.; Rojas E.; Ou C. N.; Lieberman M. W. Cataract development in gamma-glutamyl transpeptidase-deficient mice. Exp. Eye Res. 71: 575–582; 2000.PubMedCrossRefGoogle Scholar
  8. Denisova N. A.; Cantuti-Castelvetri I.; Hassan W. N.; Paulson K. E.; Joseph J. A. Role of membrane lipids in regulation of vulnerability to oxidative stress in PC12 cells: implication for aging. Free Radic. Biol. Med. 30: 671–678; 2001.PubMedCrossRefGoogle Scholar
  9. Di Pietro M.; Filardo S.; De Santis F.; Sessa R. Chlamydia pneumoniae infection in atherosclerotic lesion development through oxidative stress: a brief overview. Int. J. Mol. Sci. 14: 15105–5120; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dizdaroglu M.; Jaruga P.; Birincioglu M.; Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32: 1102–1115; 2002.PubMedCrossRefGoogle Scholar
  11. Dukhande V. V.; Kawikova I.; Bothwell A. L.; Lai J. C. Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 18: 702–712; 2013.PubMedCrossRefGoogle Scholar
  12. Fotsis T.; Pepper M. S.; Montesano R.; Aktas E.; Breit S.; Schweigerer L.; Rasku S.; Wähälä K.; Adlercreutz H. Phytoestrogens and inhibition of angiogenesis. Baillieres Clin. Endocrinol. Metab. 12: 649–666; 1998.PubMedCrossRefGoogle Scholar
  13. Gordon-Thomson C.; Gupta R.; Tongkao-on W.; Ryan A.; Halliday G. M.; Mason R. S. 1α,25 Dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem. Photobiol. Sci. 11: 1837–1847; 2012.PubMedCrossRefGoogle Scholar
  14. Guaiquil V. H.; Vera J. C.; Golde D. W. Mechanism of vitamin C inhibition of cell death induced by oxidative stress in glutathione-depleted HL-60 cells. J. Biol. Chem. 276: 40955–40961; 2001.PubMedCrossRefGoogle Scholar
  15. Guajardo-Flores D.; Serna-Saldívar S. O.; Gutiérrez-Uribe J. A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 141: 1497–1503; 2013.PubMedCrossRefGoogle Scholar
  16. Hamilton R. T.; Bhattacharya A.; Walsh M. E.; Shi Y.; Wei R.; Zhang Y.; Rodriguez K. A.; Buffenstein R.; Chaudhuri A. R.; Van Remmen H. Elevated protein carbonylation, and misfolding in sciatic nerve from db/db and Sod1(−/−) mice: plausible link between oxidative stress and demyelination. PLoS One 8: e65725; 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hanneken A.; Lin F. F.; Johnson J.; Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress induced death. Invest. Ophthalmol. Vis. Sci. 47: 3164–3177; 2006.PubMedCrossRefGoogle Scholar
  18. Huang C. S.; Anderson M. E.; Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J. Biol. Chem. 268: 20578–20583; 1993.PubMedGoogle Scholar
  19. Ishige K.; Schubert D.; Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433–446; 2001.PubMedCrossRefGoogle Scholar
  20. Jezierska-Drutel A.; Rosenzweig S. A.; Neumann C. A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119: 107–125; 2013.PubMedGoogle Scholar
  21. Kohno M.; Mizuta Y.; Kusai M.; Masumizu T.; Makino K. Measurements of superoxide anion radical and superoxide anion scavenging activity by electron spin resonance spectroscopy coupled with DMPO spin trapping. Bull. Chem. Soc. Jpn. 67: 1085–1090; 1994.CrossRefGoogle Scholar
  22. Kruk I.; Bozdağ-Dündar O.; Ertan R.; Aboul-Enein H. Y.; Michalska T. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds. Luminescence 24: 96–101; 2009.PubMedCrossRefGoogle Scholar
  23. Krzywanski D. M.; Dickinson D. A.; Iles K. E.; Wigley A. F.; Franklin C. C.; Liu R. M.; Kavanagh T. J.; Forman H. J. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch. Biochem. Biophys. 423: 116–125; 2004.PubMedCrossRefGoogle Scholar
  24. Liu J.; Shen H. M.; Ong C. N. Role of intracellular thiol depletion, mitochondrial dysfunction, and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci. 69: 1833–1850; 2001.PubMedCrossRefGoogle Scholar
  25. Maher P.; Akaishi T.; Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. U S A 103: 16568–16573; 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Mary V. S.; Theumer M. G.; Arias S. L.; Rubinstein H. R. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302: 299–307; 2012.PubMedCrossRefGoogle Scholar
  27. Middleton Jr. E.; Kandaswami C.; Theoharides T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673–751; 2000.PubMedGoogle Scholar
  28. Morris D.; Khurasany M.; Nguyen T.; Kim J.; Guilford F.; Mehta R.; Gray D.; Saviola B.; Venketaraman V. Glutathione and infection. Biochim. Biophys. Acta. 1830: 3329–3349; 2013.PubMedCrossRefGoogle Scholar
  29. Nakayama T.; Yamada M.; Osawa T.; Kawakishi S. Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochem. Pharmacol. 45: 265–267; 1993.PubMedCrossRefGoogle Scholar
  30. Nguyen C.; Teo J. L.; Matsuda A.; Eguchi M.; Chi E. Y.; Henderson Jr. W. R.; Kahn M. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma. Proc. Natl. Acad. Sci. USA 100: 1169–1173; 2003.PubMedCrossRefGoogle Scholar
  31. Okimoto Y.; Watanabe A.; Niki E.; Yamashita T.; Noguchi N. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137–140; 2000.CrossRefGoogle Scholar
  32. Piao M. J.; Kim K. C.; Chae S.; Keum Y. S.; Kim H. S.; Hyun J. W. Protective effect of fisetin (3,7,3',4'-tetrahydroxyflavone) against γ-irradiation-induced oxidative stress and cell damage. Biomol. Ther. 21: 210–215; 2013.CrossRefGoogle Scholar
  33. Rajagopalan R.; Ranjan S. K.; Nair C. K. Effect of vinblastine sulfate on gamma radiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536: 15–25; 2003.PubMedCrossRefGoogle Scholar
  34. Rosenkranz A. R.; Schmaldienst S.; Stuhlmeier K. M.; Chen W.; Knapp W.; Zlabinger G. J. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescein-diacetate. J. Immunol. Meth. 156: 39–45; 1992.CrossRefGoogle Scholar
  35. Singh N. P. Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis. Mutat. Res. 455: 111–127; 2000.PubMedCrossRefGoogle Scholar
  36. Sung B.; Pandey M. K.; Aggarwal B. B. Fisetin, an inhibitor of cyclindependent kinase 6, down-regulates nuclear factor-kappaBregulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptorinteracting protein-regulated Ikappa Balpha kinase activation. Mol. Pharmacol. 71: 1703–1714; 2007.PubMedCrossRefGoogle Scholar
  37. Tuder R. M.; Zhen L.; Cho C. Y.; Taraseviciene-Stewart L.; Kasahara Y.; Salvemini D.; Voelkel N. F.; Flores S. C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell. Mol. Biol. 29: 88–97; 2003.PubMedCrossRefGoogle Scholar
  38. van Acker S. A.; de Groot M. J.; van den Berg D. J.; Tromp M. N.; Donné-Op den Kelder G.; van der Vijgh W. J.; Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305–1312; 1996.PubMedCrossRefGoogle Scholar
  39. von Montfort C.; Matias N.; Fernandez A.; Fucho R.; Conde de la Rosa L.; Martinez-Chantar M. L.; Mato J. M.; Machida K.; Tsukamoto H.; Murphy M. P.; Mansouri A.; Kaplowitz N.; Garcia-Ruiz C.; Fernandez-Checa J. C. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. J. Hepatol. 57: 852–859; 2012.CrossRefGoogle Scholar
  40. Wang C. H.; Wu S. B.; Wu Y. T.; Wei Y. H. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp. Biol. Med. 238: 450–460; 2013.CrossRefGoogle Scholar
  41. Wang Z. H.; Kang K. A.; Zhang R.; Piao M. J.; Jo S. H.; Kim J. S.; Kang S. S.; Lee J. S.; Park D. H.; Hyun J. W. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ. Toxicol. Pharmacol. 29: 12–18; 2010.PubMedCrossRefGoogle Scholar
  42. Wätjen W.; Michels G.; Steffan B.; Niering P.; Chovolou Y.; Kampkötter A.; Tran-Thi Q. H.; Proksch P.; Kahl R. Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J. Nutr. 135: 525–531; 2005.PubMedGoogle Scholar
  43. Yang P.; He X. Q.; Peng L.; Li A. P.; Wang X. R.; Zhou J. W.; Liu Q. Z. The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J. Toxicol. Environ. Health A 70: 976–983; 2007.PubMedCrossRefGoogle Scholar
  44. Zbarsky V.; Datla K. P.; Parkar S.; Rai D. K.; Aruoma O. I.; Dexter D. T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39: 1119–1125; 2005.PubMedCrossRefGoogle Scholar
  45. Zhang R.; Kang K. A.; Kang S. S.; Park J. W.; Hyun J. W. Morin (2′,3,4′,5,7-pentahydroxyflavone) protected cells against γ-radiation-induced oxidative stress. Basic Clin. Pharmacol. Toxicol. 108: 63–72; 2011a.PubMedCrossRefGoogle Scholar
  46. Zhang R.; Lee I. K.; Piao M. J.; Kim K. C.; Kim A. D.; Kim H. S.; Chae S.; Kim H. S.; Hyun J. W. Butin (7,3′,4′-Trihydroxydihydroflavone) reduces oxidative stress-induced cell death via inhibition of the mitochondria-dependent apoptotic pathway. Int. J. Mol. Sci. 12: 3871–3887; 2011b.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Zhou H. G.; Liu L.; Zhang Y.; Huang Y. Y.; Tao Y. H.; Zhang S.; Su J. J.; Tang Y. P.; Guo Z. L.; Hu R. M.; Dong Q. Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway. CNS Neurosci. Ther. 19: 252–261; 2013.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Kyoung Ah Kang
    • 1
  • Mei Jing Piao
    • 1
  • Ki Cheon Kim
    • 1
  • Ji Won Cha
    • 1
  • Jian Zheng
    • 1
  • Cheng Wen Yao
    • 1
  • Sungwook Chae
    • 2
  • Jin Won Hyun
    • 1
    Email author
  1. 1.School of Medicine and Applied Radiological Science Research InstituteJeju National UniversityJejuRepublic of Korea
  2. 2.Aging Research CenterKorea Institute of Oriental MedicineDaejeonRepublic of Korea

Personalised recommendations