Establishment and characterization of a primary and a metastatic melanoma cell line from Grey horses

  • Monika H. Seltenhammer
  • Elisabeth Sundström
  • Claudia Meisslitzer-Ruppitsch
  • Petra Cejka
  • Jedrzej Kosiuk
  • Josef Neumüller
  • Marlene Almeder
  • Otto Majdic
  • Peter Steinberger
  • Udo M. Losert
  • Johannes Stöckl
  • Leif Andersson
  • Johann Sölkner
  • Monika Vetterlein
  • Anna Golovko
Article

Abstract

The Grey horse phenotype, caused by a 4.6 kb duplication in Syntaxin 17, is strongly associated with high incidence of melanoma. In contrast to most human melanomas with an early onset of metastasis, the Grey horse melanomas have an extended period of benign growth, after which 50% or more eventually undergo progression and may metastasize. In efforts to define changes occurring during Grey horse melanoma progression, we established an in vitro model comprised of two cell lines, HoMel-L1 and HoMel-A1, representing a primary and a metastatic stage of the melanoma, respectively. The cell lines were examined for their growth and morphological characteristics, in vitro and in vivo oncogenic potential, chromosome numbers, and expression of melanocytic antigens and tumor suppressors. Both cell lines exhibited malignant characteristics; however, the metastatic HoMel-A1 showed a more aggressive phenotype characterized by higher proliferation rates, invasiveness, and a stronger tumorigenic potential both in vitro and in vivo. HoMel-A1 displayed a near-haploid karyotype, whereas HoMel-L1 was near-diploid. The cell lines expressed melanocytic lineage markers such as TYR, TRP1, MITF, PMEL, ASIP, MC1R, POMC, and KIT. The tumor suppressor p53 was strongly expressed in both cell lines, while the tumor suppressors p16 and PTEN were absent in HoMel-A1, potentially implicating significance of these pathways in the melanoma progression. This in vitro model system will not only aid in understanding of the Grey horse melanoma pathogenesis, but also in unraveling the steps during melanoma progression in general as well as being an invaluable tool for development of new therapeutic strategies.

Keywords

Grey horse Primary and metastatic melanoma Cell lines In vitro model Tumor suppressor 

References

  1. Atkin N. B.; Baker M. C. A metastatic malignant melanoma with 24 chromosomes. Hum Genet 58: 217–219; 1981.PubMedCrossRefGoogle Scholar
  2. Bar-Eli M. Role of AP-2 in tumor growth and metastasis of human melanoma. Cancer Metastasis Rev 18: 377–385; 1999.PubMedCrossRefGoogle Scholar
  3. Bennett D. C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22: 3063–3069; 2003.PubMedCrossRefGoogle Scholar
  4. Castresana J. S.; Rubio M. P.; Vazquez J. J.; Idoate M.; Sober A. J.; Seizinger B. R.; Barnhill R. L. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 55: 562–565; 1993.PubMedCrossRefGoogle Scholar
  5. Cengelli F.; Grzyb J. A.; Montoro A.; Hofmann H.; Hanessian S.; Juillerat-Jeanneret L. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. ChemMedChem 4: 988–997; 2009.PubMedCrossRefGoogle Scholar
  6. Chapman S. W. K.; Metzger N.; Grest P.; Feige K.; von Rechenberg B.; Auer J. A.; Hottiger M. O. Isolation, establishment, and characterization of ex vivo equine melanoma cell cultures. In Vitro Cell Dev Biol Anim 45: 152–162; 2009.PubMedCrossRefGoogle Scholar
  7. Dovc P.; Susnik S.; Snoj A. Experience from Lipizzan horse and salmonid species endemic to the Adriatic river system. Examples for the application of molecular markers for preservation of biodiversity and management of animal genetic resources. J Biotechnol 113: 43–53; 2004.PubMedGoogle Scholar
  8. Fleury C.; Berard F.; Balme B.; Thomas L. The study of cutaneous melanomas in Camargue-type gray-skinned horses (1): clinical-pathological characterization. Pigment Cell Res 13: 39–46; 2000.PubMedCrossRefGoogle Scholar
  9. Goel V. K.; Ibrahim N.; Jiang G.; Singhal M.; Fee S.; Flotte T.; Westmoreland S.; Haluska F. S.; Hinds P. W.; Haluska F. G. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28: 2289–2298; 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gorham S, Robl M (1986) Melanoma in the Gray Horse - the Darker Side of Equine Aging. Veterinary Medicine 81: 446-&.Google Scholar
  11. Guerriere-Kovach P. M.; Hunt E. L.; Patterson J. W.; Glembocki D. J.; English 3rd J. C.; Wick M. R. Primary melanoma of the skin and cutaneous melanomatous metastases: comparative histologic features and immunophenotypes. Am J Clin Pathol 122: 70–77; 2004.PubMedCrossRefGoogle Scholar
  12. Hearing JV, Leong SPL (2006) From Melanocytes to Melanoma: The Progression to Malignancy Humana Press Totowa, New Jersey.Google Scholar
  13. Herlyn D.; Iliopoulos D.; Jensen P. J.; Parmiter A.; Baird J.; Hotta H.; Adachi K.; Ross A. H.; Jambrosic J.; Koprowski H.; Herlyn M. In vitro properties of human melanoma cells metastatic in nude mice. Cancer Res 50: 2296–2302; 1990.PubMedGoogle Scholar
  14. Kannan K.; Sharpless N. E.; Xu J.; O'Hagan R. C.; Bosenberg M.; Chin L. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci USA 100: 1221–1225; 2003.PubMedCrossRefGoogle Scholar
  15. Koenig A.; Wojcieszyn J.; Weeks B. R.; Modiano J. F. Expression of S100a, vimentin, NSE, and melan A/MART-1 in seven canine melanoma cells lines and twenty-nine retrospective cases of canine melanoma. Vet Pathol 38: 427–435; 2001.PubMedCrossRefGoogle Scholar
  16. Luis C.; Juras R.; Oom M. M.; Cothran E. G. Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Anim Genet 38: 20–27; 2007.PubMedCrossRefGoogle Scholar
  17. MacGillivray K. C.; Sweeney R. W.; Del Piero F. Metastatic melanoma in horses. J Vet Intern Med 16: 452–456; 2002.PubMedCrossRefGoogle Scholar
  18. Monahan K. B.; Rozenberg G. I.; Krishnamurthy J.; Johnson S. M.; Liu W.; Bradford M. K.; Horner J.; Depinho R. A.; Sharpless N. E. Somatic p16(INK4a) loss accelerates melanomagenesis. Oncogene 29: 5809–5817; 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Patton E. E.; Widlund H. R.; Kutok J. L.; Kopani K. R.; Amatruda J. F.; Murphey R. D.; Berghmans S.; Mayhall E. A.; Traver D.; Fletcher C. D.; Aster J. C.; Granter S. R.; Look A. T.; Lee C.; Fisher D. E.; Zon L. I. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15: 249–254; 2005.PubMedCrossRefGoogle Scholar
  20. Ragnarsson-Olding B. K.; Karsberg S.; Platz A.; Ringborg U. K. Mutations in the TP53 gene in human malignant melanomas derived from sun-exposed skin and unexposed mucosal membranes. Melanoma Res 12: 453–463; 2002.PubMedCrossRefGoogle Scholar
  21. Raposo G.; Tenza D.; Murphy D. M.; Berson J. F.; Marks M. S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152: 809–824; 2001.PubMedCrossRefGoogle Scholar
  22. Rosengren Pielberg G.; Golovko A.; Sundström E.; Curik I.; Lennartsson J.; Seltenhammer M. H.; Druml T.; Binns M.; Fitzsimmons C.; Lindgren G.; Sandberg K.; Baumung R.; Vetterlein M.; Stromberg S.; Grabherr M.; Wade C.; Lindblad-Toh K.; Ponten F.; Heldin C. H.; Solkner J.; Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet 40: 1004–1009; 2008.PubMedCrossRefGoogle Scholar
  23. Seltenhammer M. H.; Heere-Ress E.; Brandt S.; Druml T.; Jansen B.; Pehamberger H.; Niebauer G. W. Comparative histopathology of Grey horse melanoma and human malignant melanoma. Pigment Cell Res 17: 674–681; 2004.PubMedCrossRefGoogle Scholar
  24. SAS Institute Inc. Base SAS(R)9.2 Procedures Guide. Cary, NC: SAS Institute Inc. 2011.Google Scholar
  25. Sharpless N. E.; Kannan K.; Xu J.; Bosenberg M. W.; Chin L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22: 5055–5059; 2003.PubMedCrossRefGoogle Scholar
  26. Sundström E.; Imsland F.; Mikko S.; Wade C.; Sigurdsson S.; Pielberg G. R.; Golovko A.; Curik I.; Seltenhammer M. H.; Solkner J.; Lindblad-Toh K.; Andersson L. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genomics 13: 365; 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Sundström E.; Komisarczuk A. Z.; Jiang L.; Golovko A.; Navratilova P.; Rinkwitz S.; Becker T. S.; Andersson L. Identification of a melanocyte-specific, microphthalmia-associated transcription factor-dependent regulatory element in the intronic duplication causing hair graying and melanoma in horses. Pigment Cell Melanoma Res 25: 28–36; 2011.PubMedCrossRefGoogle Scholar
  28. Sutton R. H.; Coleman G. T. Melanoma and the Graying horse. RIRDC Research, Paper Series Barton, Australia; 1997.Google Scholar
  29. Tlsty T. D.; Briot A.; Gualberto A.; Hall I.; Hess S.; Hixon M.; Kuppuswamy D.; Romanov S.; Sage M.; White A. Genomic instability and cancer. Mutat Res 337: 1–7; 1995.PubMedCrossRefGoogle Scholar
  30. Toti P.; Greco G.; Mangiavacchi P.; Bruni A.; Palmeri M. L.; Luzi P. DNA ploidy pattern in choroidal melanoma: correlation with survival. A flow cytometry study on archival material. Br J Ophthalmol 82: 1433–1437; 1998.PubMedCrossRefGoogle Scholar
  31. Valentine B. A. Equine melanocytic tumors: a retrospective study of 53 horses (1988 to 1991). J Vet Intern Med 9: 291–297; 1995.PubMedCrossRefGoogle Scholar
  32. Yajima I.; Kumasaka M. Y.; Thang N. D.; Goto Y.; Takeda K.; Yamanoshita O.; Iida M.; Ohgami N.; Tamura H.; Kawamoto Y.; Kato M. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy. Dermatol Res Pract 2012: 354191; 2012.PubMedCentralPubMedGoogle Scholar
  33. Yu H.; McDaid R.; Lee J.; Possik P.; Li L.; Kumar S. M.; Elder D. E.; Van Belle P.; Gimotty P.; Guerra M.; Hammond R.; Nathanson K. L.; Dalla Palma M.; Herlyn M.; Xu X. The role of BRAF mutation and p53 inactivation during transformation of a subpopulation of primary human melanocytes. Am J Pathol 174: 2367–2377; 2009.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Monika H. Seltenhammer
    • 1
    • 2
    • 3
  • Elisabeth Sundström
    • 4
  • Claudia Meisslitzer-Ruppitsch
    • 5
  • Petra Cejka
    • 6
  • Jedrzej Kosiuk
    • 5
  • Josef Neumüller
    • 5
  • Marlene Almeder
    • 5
  • Otto Majdic
    • 6
  • Peter Steinberger
    • 6
  • Udo M. Losert
    • 7
  • Johannes Stöckl
    • 6
  • Leif Andersson
    • 4
    • 8
  • Johann Sölkner
    • 9
  • Monika Vetterlein
    • 5
  • Anna Golovko
    • 4
  1. 1.Department of Forensic SciencesViennaAustria
  2. 2.Center of Physiology and Pharmacology, Vasco-Bio-LaboratoryMedical University of ViennaViennaAustria
  3. 3.Department of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
  4. 4.Science for Life Laboratory Uppsala, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
  5. 5.Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  6. 6.Institute of ImmunologyMedical University of ViennaViennaAustria
  7. 7.Core Unit for Biomedical ResearchMedical University of ViennaViennaAustria
  8. 8.Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  9. 9.Department of Sustainable Agricultural SystemsUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations