Advertisement

Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells

  • Parvin Salehinejad
  • Noorjahan Banu Alitheen
  • Ali MandegaryEmail author
  • Seyed Noureddin Nematollahi-mahani
  • Ehsan Janzamin
Article

Abstract

Mesenchymal stem cells have been increasingly introduced to have great potential in regenerative medicine, immunotherapy, and gene therapy due to their unique properties of self-renewal and differentiation into multiple cell lineages. Studies have shown that these properties may be limited and changed by senescence-associated growth arrest under different culture conditions. This study aimed to present the ability of some growth factors on human umbilical cord mesenchymal (hUCM) cells expansion and telomerase activity. To optimize hUCM cell growth, epidermal growth factor (EGF) and fibroblast growth factor (FGF) were utilized in culture media, and the ability of these growth factors on the expression of the telomerase reverse transcriptase (TERT) gene and cell cycle phases was investigated. TERT mRNA expression increased in the hUCM cells treated by EGF and FGF. So, the untreated hUCM cells expressed 30.49 ± 7.15% of TERT, while EGF-treated cells expressed 51.82 ± 12.96% and FGF-treated cells expressed 33.77 ± 11.55% of TERT. Exposure of hUCM cells to EGF or FGF also promoted the progression of cells from G1 to S phase of the cell cycle and induced them to decrease the number of cells entering the G2/M phase. Our study showed that EGF and, to a lesser extent, FGF amplify the proliferation and expansion of hUCM cells.

Keywords

Cell cycle Growth factors TERT Umbilical cord matrix-derived cells 

References

  1. Alenzi F. Q.; Alenazi B. Q.; Ahmad S. Y.; Salem M. L.; Al-Jabri A. A.; Wyse R. K. The haemopoietic stem cell: between apoptosis and self renewal. Yale J. Biol. Med. 82: 7–18; 2009.PubMedGoogle Scholar
  2. Bayne S.; Liu J. P. Hormones and growth factors regulate telomerase activity in ageing and cancer. Mol. Cell. Endocrinol. 240: 11–22; 2005.PubMedCrossRefGoogle Scholar
  3. Budiyanto A.; Bito T.; Kunisada M.; Ashida M.; Ichihashi M.; Ueda M. Inhibition of the epidermal growth factor receptor suppresses telomerase activity in HSC-1 human cutaneous squamous cell carcinoma cells. J. Invest. Dermatol. 121: 1088–1094; 2003.PubMedCrossRefGoogle Scholar
  4. Cao F. J.; Feng S. Q. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin. Med. J. (Engl) 122: 225–231; 2009.Google Scholar
  5. Chomal M. R. Analysis of telomerase activity and telomere lengths in human umbilical cord cell populations during ex vivo amplification of hematopoietic stem cells. Worcester Polytechnic Institute, Worcester; 2003.Google Scholar
  6. Dhulipala V. C.; Welshons W. V.; Reddy C. S. Cell cycle proteins in normal and chemically induced abnormal secondary palate development: a review. Hum. Exp. Toxicol. 25: 675–682; 2006.PubMedCrossRefGoogle Scholar
  7. Duong J.; Mii S.; Uchugonova A.; Liu F.; Moossa A. R.; Hoffman R. M. Real-time confocal imaging of trafficking of nestin-expressing multipotent stem cells in mouse whiskers in long-term 3-D histoculture. In Vitro Cell. Dev. Biol. Anim. 48: 301–305; 2012.PubMedCrossRefGoogle Scholar
  8. Garcia C. M.; Yu K.; Zhao H.; Ashery-Padan R.; Ornitz D. M.; Robinson M. L.; Beebe D. C. Signaling through FGF receptor-2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev. Dyn. 233: 516–527; 2005.PubMedCrossRefGoogle Scholar
  9. Gauthaman K.; Fong C. Y.; Subramanian A.; Biswas A.; Bongso A. ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton’s jelly stem cells after cryopreservation. Stem Cell Rev. 6: 665–676; 2010.PubMedCrossRefGoogle Scholar
  10. Hoffman R. M. To do tissue culture in two or three dimensions? That is the question. Stem Cell 11: 105–111; 1993.CrossRefGoogle Scholar
  11. Hoffman R. M. Histocultures and their use. Encyclopedia of life sciences. Wiley, Chichester; 2010.Google Scholar
  12. Hulleman E.; Boonstra J. Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell. Mol. Life Sci. 58: 80–93; 2001.PubMedCrossRefGoogle Scholar
  13. Jeon B. G.; Kumar B. M.; Kang E. J.; Ock S. A.; Lee S. L.; Kwack D. O.; Byun J. H.; Park B. W.; Rho G. J. Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res. 345: 149–161; 2011.PubMedCrossRefGoogle Scholar
  14. LeVea C. M.; Reeder J. E.; Mooney R. A. EGF-dependent cell cycle progression is controlled by density-dependent regulation of Akt activation. Exp. Cell Res. 297: 272–284; 2004.PubMedCrossRefGoogle Scholar
  15. Liang C. M.; Tai M. C.; Chang Y. H.; Chen Y. H.; Chen C. L.; Chien M. W.; Chen J. T. Glucosamine inhibits epidermal growth factor-induced proliferation and cell-cycle progression in retinal pigment epithelial cells. Mol. Vis. 16: 2559–2571; 2010.PubMedGoogle Scholar
  16. Liang X. J.; Chen X. J.; Yang D. H.; Huang S. M.; Sun G. D.; Chen Y. P. Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biol. Int. 36: 215–221; 2012.Google Scholar
  17. Liu F.; Uchugonova A.; Kimura H.; Zhang C.; Zhao M.; Zhang L.; Koenig K.; Duong J.; Aki R.; Saito N.; Mii S.; Amoh Y.; Katsuoka K.; Hoffman R. M. The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10: 830–839; 2011.PubMedCrossRefGoogle Scholar
  18. Liu S. J.; Cai Z. W.; Liu Y. J.; Dong M. Y.; Sun L. Q.; Hu G. F.; Wei Y. Y.; Lao W. D. Role of nucleostemin in growth regulation of gastric cancer, liver cancer and other malignancies. World J. Gastroenterol. 10: 1246–1249; 2004.PubMedGoogle Scholar
  19. Maida Y.; Kyo S.; Kanaya T.; Wang Z.; Yatabe N.; Tanaka M.; Nakamura M.; Ohmichi M.; Gotoh N.; Murakami S.; Inoue M. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 21: 4071–4079; 2002.PubMedCrossRefGoogle Scholar
  20. Majore I.; Moretti P.; Stahl F.; Hass R.; Kasper C. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev. 7: 17–31; 2011.PubMedCrossRefGoogle Scholar
  21. Masutomi K.; Yu E. Y.; Khurts S.; Ben-Porath I.; Currier J. L.; Metz G. B.; Brooks M. W.; Kaneko S.; Murakami S.; DeCaprio J. A.; Weinberg R. A.; Stewart S. A.; Hahn W. C. Telomerase maintains telomere structure in normal human cells. Cell 114: 241–253; 2003.PubMedCrossRefGoogle Scholar
  22. Miura T.; Katakura Y.; Yamamoto K.; Uehara N.; Tsuchiya T.; Kim E. H.; Shirahata S. Neural stem cells lose telomerase activity upon differentiating into astrocytes. Cytotechnology 36: 137–144; 2001.PubMedCrossRefGoogle Scholar
  23. Murthy V. Telomerase activity in human umbilical cord cell populations containing hematopoietic stem cells. Worcester Polytechnic Institute, Worcester; 2002.Google Scholar
  24. Salehinejad P.; Alitheen N. B.; Ali A. M.; Omar A. R.; Mohit M.; Janzamin E.; Samani F. S.; Torshizi Z.; Nematollahi-Mahani S. N. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell. Dev. Biol. Anim. 48: 75–83; 2012a.PubMedCrossRefGoogle Scholar
  25. Salehinejad P.; Alitheen N. B.; Nematollahi-Mahani S. N.; Ali A. M.; Omar A. R.; Janzamin E.; Hajghani M. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells. Cytotherapy 14: 948–953; 2012b.PubMedCrossRefGoogle Scholar
  26. Schwob A. E.; Nguyen L. J.; Meiri K. F. Immortalization of neural precursors when telomerase is overexpressed in embryonal carcinomas and stem cells. Mol. Biol. Cell 19: 1548–1560; 2008.PubMedCrossRefGoogle Scholar
  27. Serakinci N.; Graakjaer J.; Kolvraa S. Telomere stability and telomerase in mesenchymal stem cells. Biochimie 90: 33–40; 2008.PubMedCrossRefGoogle Scholar
  28. Seshareddy B. K. Human Wharton’s jelly cells—isolation and characterization in different growth conditions. Kansas State University, Kansas; 2008.Google Scholar
  29. Stenderup K.; Justesen J.; Clausen C.; Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33: 919–926; 2003.PubMedCrossRefGoogle Scholar
  30. Tamura M.; Kawabata A.; Ohta N.; Uppalapati L.; Becker K. G.; Troyer D. Wharton’s jelly stem cell as agent for cancer therapy. Open Tissue Eng. Regen. Med. J. 4: 39–47; 2011.CrossRefGoogle Scholar
  31. Upadhyay D.; Chang W.; Wei K.; Gao M.; Rosen G. D. Fibroblast growth factor-10 prevents H2O2-induced cell cycle arrest by regulation of G1 cyclins and cyclin dependent kinases. FEBS Lett. 581: 248–252; 2007.PubMedCrossRefGoogle Scholar
  32. Wang F. Z.; Sha L.; Zhang W. Y.; Wu L. Y.; Qiao L.; Li N.; Zhang X. D.; Ye L. H. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells. Acta Pharmacol. Sin. 28: 431–438; 2007.PubMedCrossRefGoogle Scholar
  33. Wojtyla A.; Gladych M.; Rubis B. Human telomerase activity regulation. Mol. Biol. Rep. 38: 3339–3349; 2011.PubMedCrossRefGoogle Scholar
  34. Young H. E.; Black A. C. Adult stem cells. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 276: 75–102; 2004.PubMedCrossRefGoogle Scholar
  35. Zeng H. L.; Zhong Q.; Qin Y. L.; Bu Q. Q.; Han X. A.; Jia H. T.; Liu H. W. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biol. 12: 32; 2011.PubMedCrossRefGoogle Scholar
  36. Zhu X.; Kumar R.; Mandal M.; Sharma N.; Sharma H. W.; Dhingra U.; Sokoloski J. A.; Hsiao R.; Narayanan R. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc. Natl. Acad. Sci. U.S.A. 93: 6091–6095; 1996.PubMedCrossRefGoogle Scholar
  37. Zimmermann S.; Voss M.; Kaiser S.; Kapp U.; Waller C. F.; Martens U. M. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17: 1146–1149; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Parvin Salehinejad
    • 1
    • 3
  • Noorjahan Banu Alitheen
    • 2
  • Ali Mandegary
    • 3
    • 4
    Email author
  • Seyed Noureddin Nematollahi-mahani
    • 3
    • 5
  • Ehsan Janzamin
    • 6
  1. 1.Institute of BioscienceUniversiti Putra MalaysiaKuala LumpurMalaysia
  2. 2.Faculty of Molecular and BiotechnologyUniversiti Putra MalaysiaKuala LumpurMalaysia
  3. 3.Neuroscience research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
  4. 4.Department of Toxicology and Pharmacology, School of PharmacyKerman University of Medical SciencesKermanIran
  5. 5.Department of Anatomy, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
  6. 6.Stem Cells and Developmental Biology Group of Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran

Personalised recommendations