Scaffolds derived from cancellous bovine bone support mesenchymal stem cells' maintenance and growth

  • Fahimeh Shahabipour
  • Nasser Mahdavi-ShahriEmail author
  • Maryam M. Matin
  • Amin Tavassoli
  • S. Mojtaba Zebarjad


Since bone defects can lead to various disabilities, in recent years, many increasing attempts have been made in bone tissue engineering. In this regard, scaffolds have attracted a lot of attention as three dimensional substrates for cell attachment which improve successful tissue engineering. The aim of the present study was to provide an interconnected porous scaffold to facilitate cell infiltration. To do so, cancellous bone from bovine femur was dissected in fragments and decellularized by physicochemical methods, including snap freeze/thaw, rinsing in hot water and treatment with different solutions of sodium dodecyl sulfate (SDS). Histological analysis and 4′,6-diamidino-2-phenylindole staining revealed that the best results were obtained after treatment with 2.5%, 5%, and 8% SDS for 8, 3, or 1 h respectively, which significantly removed bone cells with intact trabeculae geometry. Further characterization of decellularized scaffolds by the compression tests also revealed no significant difference between elastic modulus values of the three different SDS treatments. Moreover, studying the ratio of bone trabeculae to bone surfaces (BT/BS) as assessed by Clemex vision software 3.5 showed that treatment with 2.5% SDS for 8 h resulted in a BT/BS score in the range of native bone and therefore this treatment was used for further experiments. Histological studies and scanning electron microscopy revealed rat mesenchymal stem cells integration, adhesion, and maintenance during the 2 and 7 d of culture in vitro. In conclusion, the present results support the effective role of SDS in cancellous bovine bone decellularization and also propensity of treated samples in providing a suitable three-dimentional environment to support the maintenance and growth of mesenchymal stem cells.


Cancellous bone Decellularization Scaffold Mesenchymal stem cells 



This work was supported by a grant (No. 33237) from Ferdowsi University of Mashhad. The authors gratefully acknowledge Mr. S. Abravi, Mrs M. Saeinasab, and Mrs F. B. Rassouli for their great help and support.


  1. Abousleiman R. I.; Reyes Y.; McFetridge P.; Sikavitsas V. The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif. Organs 32(9): 735–742; 2008.PubMedCrossRefGoogle Scholar
  2. Ackbar R.; Ainoedhofer H.; Gugatschka M.; Saxena A. K. Decellularized ovine esophageal mucosa for esophageal tissue engineering. Technol. Health Care 20(3): 215–223; 2012.PubMedGoogle Scholar
  3. Badylak S. F.; Lantz G. C.; Coffey A.; Geddes L. A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47(1): 74–80; 1989.PubMedCrossRefGoogle Scholar
  4. Cartmell J. S.; Dunn M. G. Effect of chemical treatments on tendon cellularity and mechanical properties. J. Biomed. Mater. Res. 49(1): 134–140; 2000.PubMedCrossRefGoogle Scholar
  5. Chaarif M. É.; Drazetic P. Identification of the spongy bone mechanical behaviour under compression loads: numerical simulation versus experimental results. J. Crashworthiness 12(3): 247–253; 2007.CrossRefGoogle Scholar
  6. Chao P. H.; Grayson W. et al. Engineering cartilage and bone using human mesenchymal stem cells. J. Orthop. Sci. 12(4): 398–404; 2007.PubMedCrossRefGoogle Scholar
  7. Edalatmanesh M. A.; Matin M. M.; Neshati Z.; Bahrami A. R.; Kheirabadi M. Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol. Res. 32: 166–172; 2010.Google Scholar
  8. Elder B. D.; Eleswarapu S. V.; Athanasiou K. A. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30(22): 3749–3756; 2009.PubMedCrossRefGoogle Scholar
  9. Fröhlich M.; Grayson W. L.; Wan L. Q.; Marolt D.; Drobnic M.; Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr. Stem Cell Res. Ther. 3(4): 254–264; 2008.PubMedCrossRefGoogle Scholar
  10. Gilbert T. W.; Sellaro T. L.; Badylak S. F. Decellularization of tissues and organs. Biomaterials 27(19): 3675–3683; 2006.PubMedGoogle Scholar
  11. Gilbert T. W.; Stolz D. B.; Biancaniello F.; Simmons-Byrd A.; Badylak S. F. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 26(12): 1431–1435; 2005.PubMedCrossRefGoogle Scholar
  12. Gratzer P. F.; Harrison R. D.; Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 12(10): 2975–2983; 2006.PubMedCrossRefGoogle Scholar
  13. Grauss R. W.; Hazekamp M. G.; Oppenhuizen F.; van Munsteren C. J.; Gittenberger-de Groot A. C.; DeRuiter M. C. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg. 27(4): 566–571; 2005.PubMedCrossRefGoogle Scholar
  14. Greenwald A. S.; Boden S. D.; Goldberg V. M.; Khan Y.; Laurencin C. T.; Rosier R. N. Bone-graft substitutes: facts, fictions, and applications. J. Bone Joint Surg. Am. 83-A(Suppl 2 Pt 2): 98–103; 2001.PubMedGoogle Scholar
  15. Hülsmann J.; Grün K.; El Amouri S.; Barth M.; Hornung K.; Holzfuß C.; Lichtenberg A.; Akhyari P. Transplantation material bovine pericardium: biomechanical and immunogenic characteristics after decellularization vs. glutaraldehyde-fixing. Xenotransplantation 19(5): 286–297; 2012.PubMedCrossRefGoogle Scholar
  16. Hutmacher D. W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12(1): 107–124; 2001.PubMedCrossRefGoogle Scholar
  17. Jackson D. W.; Windler G. E.; Simon T. M. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 18(1): 1–10; 1990. discussion 10–11.PubMedCrossRefGoogle Scholar
  18. Ketchedjian A.; Jones A. L.; Krueger P.; Robinson E.; Crouch K.; Wolfinbarger Jr. L.; Hopkins R. "Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions.". Ann. Thorac. Surg. 79(3): 888–896; 2005. discussion 896.PubMedCrossRefGoogle Scholar
  19. Kim S. H.; Shin J. W.; Park S. A.; Kim Y. K.; Park M. S.; Mok J. M.; Yang W. I.; Lee J. W. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed. Mater. Res. B Appl. Biomater. 68(1): 69–74; 2004.PubMedCrossRefGoogle Scholar
  20. Kneser U.; Schaefer D. J.; Polykandriotis E.; Horch R. E. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell. Mol. Med. 10(1): 7–19; 2006.PubMedCrossRefGoogle Scholar
  21. Liao J.; Joyce E. M.; Sacks M. S. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8): 1065–1074; 2008.PubMedCrossRefGoogle Scholar
  22. Lumpkins S. B.; Pierre N.; McFetridge P. S. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 4(4): 808–816; 2008.PubMedCrossRefGoogle Scholar
  23. McFetridge P. S.; Daniel J. W.; Bodamyali T.; Horrocks M.; Chaudhuri J. B. Preparation of porcine carotid arteries for vascular tissue engineering applications. J. Biomed. Mater. Res. A 70(2): 224–234; 2004.PubMedCrossRefGoogle Scholar
  24. Meijer G. J.; de Bruijn J. D.; Koole R.; van Blitterswijk C. A. Cell-based bone tissue engineering. PLoS Med. 4(2): e9; 2007.PubMedCrossRefGoogle Scholar
  25. Ott H. C.; Matthiesen T. S.; Goh S. K.; Black L. D.; Kren S. M.; Netoff T. I.; Taylor D. A. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2): 213–221; 2008.PubMedCrossRefGoogle Scholar
  26. Otzen D. E. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys. J. 83(4): 2219–2230; 2002.PubMedCrossRefGoogle Scholar
  27. Rosario D. J.; Reilly G. C.; Ali Salah E.; Glover M.; Bullock A. J.; Macneil S. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen. Med. 3(2): 145–156; 2008.PubMedCrossRefGoogle Scholar
  28. Staubli A. E.; De Simoni C.; Babst R.; Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia–early results in 92 cases. Injury 34(Suppl 2): B55–62; 2003.PubMedCrossRefGoogle Scholar
  29. Sullivan D. C.; Mirmalek-Sani S. H.; Deegan D. B.; Baptista P. M.; Aboushwareb T.; Atala A.; Yoo J. J. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31): 7756–7764; 2012.PubMedCrossRefGoogle Scholar
  30. Tabata Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 6(Suppl 3): S311–324; 2009.PubMedCrossRefGoogle Scholar
  31. Valentin D.; Alain G.; Aline M.; Luc M.; Lafage-Proust M. H.; Alain R.; Val M.; Noble B.; Jones D. B.; Vico L. Ex Vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. Part A. 14: 117–126; 2008.Google Scholar
  32. Vavken P.; Fleming B. C.; Mastrangelo A. N.; Machan J. T.; Murray M. M. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy 28(5): 672–80; 2012.PubMedCrossRefGoogle Scholar
  33. Vavken P.; Joshi S.; Murray M. M. TRITON-X is most effective among three decellularization agents for ACL tissue engineering. J. Orthop. Res. 27(12): 1612–1618; 2009.PubMedCrossRefGoogle Scholar
  34. Wang B.; Borazjani A.; Tahai M.; Curry A. L.; Simionescu D. T.; Guan J.; To F.; Elder S. H.; Liao J. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J. Biomed. Mater. Res. A 94(4): 1100–1110; 2010.PubMedGoogle Scholar
  35. Woods T.; Gratzer P. F. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35): 7339–7349; 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Fahimeh Shahabipour
    • 1
  • Nasser Mahdavi-Shahri
    • 1
    • 2
    Email author
  • Maryam M. Matin
    • 1
    • 2
  • Amin Tavassoli
    • 1
  • S. Mojtaba Zebarjad
    • 3
  1. 1.Department of BiologyFaculty of Science, Ferdowsi University of MashhadMashhadIran
  2. 2.Cell and Molecular Biotechnology Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran
  3. 3.Department of Materials Science and Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations