Advertisement

Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line

  • De Chang
  • Huiwen Xu
  • Yinghua Guo
  • Xuege Jiang
  • Yan Liu
  • Kailong Li
  • Chunxiao Pan
  • Ming Yuan
  • Junfeng Wang
  • Tianzhi Li
  • Changting LiuEmail author
Article

Abstract

Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future.

Keywords

Metastasis potential Simulated microgravity Human lung adenocarcinoma cells Invasion Migration Cell proliferation 

Notes

Acknowledgments

This work was supported by the Key Pre-Research Foundation of Military Equipment of China (grant no. 9140A26040312JB10078), the Key Program of Medical Research in the Military “12th 5-year Plan”, China (no. BWS12J046), the China Postdoctoral Science Foundation (grant no. 201104776), the Defense Medical Fund of China (grant no. 06Z048), the State Key Laboratory of Space Medicine Fundamentals and Application, the General Financial Grant from the China Postdoctoral Science Foundation (no. 2012M521873), and the China Astronaut Research and Training Center (grant nos. SMFA11A01 and SMFA11K02).

References

  1. Barjaktarovic Z.; Nordheim A.; Lamkemeyer T.; Fladerer C.; Madlung J.; Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58: 4357–4363; 2007.PubMedCrossRefGoogle Scholar
  2. Buravkova L. B.; Rykova M. P.; Grigorieva V.; Antropova E. N. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P177–P180; 2004.Google Scholar
  3. Chaffer C. L.; Weinberg R. A. A perspective on cancer cell metastasis. Science 331: 1559–1564; 2011.PubMedCrossRefGoogle Scholar
  4. Dai Z. Q.; Wang R.; Ling S. K.; Wan Y. M.; Li Y. H. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 40: 671–684; 2007.PubMedCrossRefGoogle Scholar
  5. Dome B.; Somlai B.; Tamasy A.; Peter L.; Tovari J.; Horvath A.; Timar J. Prognosis and invasion marker expression of cutaneous melanoma. Metastasis-associated genes (nm23, CD44v3, MMP2. Orv. Hetil. 140: 235–240; 1999.PubMedGoogle Scholar
  6. Fidler I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3: 453–458; 2003.PubMedCrossRefGoogle Scholar
  7. Gerathewohl S. J. Physics and psychophysics of weightlessness; visual perception. J. Aviat. Med. 23: 373–395; 1952.PubMedGoogle Scholar
  8. Giard D. J.; Aaronson S. A.; Todaro G. J.; Arnstein P.; Kersey J. H.; Dosik H.; Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51: 1417–1423; 1973.PubMedGoogle Scholar
  9. Grimm D.; Bauer J.; Kossmehl P.; Shakibaei M.; Schoberger J.; Pickenhahn H.; Schulze-Tanzil G.; Vetter R.; Eilles C.; Paul M. et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 16: 604–606; 2002.Google Scholar
  10. Infanger M.; Kossmehl P.; Shakibaei M.; Bauer J.; Kossmehl-Zorn S.; Cogoli A.; Curcio F.; Oksche A.; Wehland M.; Kreutz R. et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324: 267–277; 2006.PubMedCrossRefGoogle Scholar
  11. Ivanova K.; Eiermann P.; Tsiockas W.; Hauslage J.; Hemmersbach R.; Gerzer R. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness. Acta Astronaut. 68: 652–655; 2011.CrossRefGoogle Scholar
  12. Kacena M. A.; Todd P.; Gerstenfeld L. C.; Landis W. J. Experiments with osteoblasts cultured under varying orientations with respect to the gravity vector. Cytotechnology 39: 147–154; 2002.PubMedCrossRefGoogle Scholar
  13. Kang C. Y.; Zou L.; Yuan M.; Wang Y.; Li T. Z.; Zhang Y.; Wang J. F.; Li Y.; Deng X. W.; Liu C. T. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur. J. Appl. Physiol. 111: 2131–2138; 2011.PubMedCrossRefGoogle Scholar
  14. Kondratiev S.; Gnepp D. R.; Yakirevich E.; Sabo E.; Annino D. J.; Rebeiz E.; Laver N. V. Expression and prognostic role of MMP2, MMP9, MMP13, and MMP14 matrix metalloproteinases in sinonasal and oral malignant melanomas. Hum. Pathol. 39: 337–343; 2008.PubMedCrossRefGoogle Scholar
  15. Martin B.; Paesmans M.; Mascaux C.; Berghmans T.; Lothaire P.; Meert A. P.; Lafitte J. J.; Sculier J. P. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br. J. Cancer 91: 2018–2025; 2004.PubMedCrossRefGoogle Scholar
  16. Meloni M. A.; Galleri G.; Camboni M. G.; Pippia P.; Cogoli A.; Cogoli-Greuter M. Modeled microgravity affects motility and cytoskeletal structures. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P197–P198; 2004.Google Scholar
  17. Pantel K.; Brakenhoff R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4: 448–456; 2004.PubMedCrossRefGoogle Scholar
  18. Pietsch J.; Bauer J.; Egli M.; Infanger M.; Wise P.; Ulbrich C.; Grimm D. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med. 11: 350–364; 2011.PubMedCrossRefGoogle Scholar
  19. Protzel C.; Knoedel J.; Zimmermann U.; Woenckhaus C.; Poetsch M.; Giebel J. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histol. Histopathol. 22: 1197–1204; 2007.PubMedGoogle Scholar
  20. Qian A. R.; Zhang W.; Xie L.; Weng Y.; Yang P.; Wang Z.; Hu L.; Xu H.; Tian Z.; Shang P. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut. 63: 947–958; 2008.CrossRefGoogle Scholar
  21. Qu L.; Chen H.; Liu X.; Bi L.; Xiong J.; Mao Z.; Li Y. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem. Res. 35: 1445–1454; 2010.PubMedCrossRefGoogle Scholar
  22. Sethi N.; Kang Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat. Rev. Cancer 11: 735–748; 2011.PubMedCrossRefGoogle Scholar
  23. Shi F.; Wang Y. C.; Zhao T. Z.; Zhang S.; Du T. Y.; Yang C. B.; Li Y. H.; Sun X. Q. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7: e40365; 2012.PubMedCrossRefGoogle Scholar
  24. Soomro I. N.; Holmes J.; Whimster W. F. Predicting prognosis in lung cancer: use of proliferation marker, Ki67 monoclonal antibody. JPMA J. Pakistan Med. Assoc. 48: 66–69; 1998.Google Scholar
  25. Sozzi G.; Conte D.; Leon M.; Ciricione R.; Roz L.; Ratcliffe C.; Roz E.; Cirenei N.; Bellomi M.; Pelosi G. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol.: Official Journal of the American Society of Clinical Oncology 21: 3902–3908; 2003.CrossRefGoogle Scholar
  26. Sundaresan A.; Pellis N. R. Cellular and genetic adaptation in low-gravity environments. Ann. N. Y. Acad. Sci. 1161: 135–146; 2009.PubMedCrossRefGoogle Scholar
  27. Takeda M.; Magaki T.; Okazaki T.; Kawahara Y.; Manabe T.; Yuge L.; Kurisu K. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci. Lett. 463: 54–59; 2009.PubMedCrossRefGoogle Scholar
  28. Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Gasset G.; Schoevaert D. Weightlessness acts on human breast cancer cell line MCF-7. Adv. Space Res. 32: 1595–1603; 2003.PubMedCrossRefGoogle Scholar
  29. Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Karniguian A.; Gasset G.; Irinopoulou T.; Calvo F.; Rigaut J. P. et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 15: 1104–1106; 2001.Google Scholar
  30. Vihinen P.; Kahari V. M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer J. Int. Du Cancer 99: 157–166; 2002.CrossRefGoogle Scholar
  31. Walther I.; Pippia P.; Meloni M. A.; Turrini F.; Mannu F.; Cogoli A. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett. 436: 115–118; 1998.PubMedCrossRefGoogle Scholar
  32. Wang Y.; An L.; Jiang Y.; Hang H. Effects of simulated microgravity on embryonic stem cells. PLoS One 6: e29214; 2011.PubMedCrossRefGoogle Scholar
  33. Yamazaki T.; Yoshimoto M.; Nishiyama Y.; Okubo Y.; Makimura K. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiol. Immunol. 56: 441–446; 2012.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • De Chang
    • 1
    • 3
  • Huiwen Xu
    • 2
  • Yinghua Guo
    • 1
  • Xuege Jiang
    • 1
  • Yan Liu
    • 1
  • Kailong Li
    • 3
  • Chunxiao Pan
    • 3
  • Ming Yuan
    • 4
  • Junfeng Wang
    • 1
  • Tianzhi Li
    • 1
  • Changting Liu
    • 1
    Email author
  1. 1.Nanlou Respiratory Diseases DepartmentChinese PLA General HospitalBeijingChina
  2. 2.Institute for Medical Device Standardization AdministrationNational Institute for Food and Drug ControlBeijingChina
  3. 3.Department of Pathology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  4. 4.The State Key Laboratory of Space Medicine Fundamentals and ApplicationChina Astronaut Research and Training CenterBeijingChina

Personalised recommendations