In Vitro Cellular & Developmental Biology - Animal

, Volume 49, Issue 2, pp 147–154

Isolation, characterization, and mesodermic differentiation of stem cells from adipose tissue of camel (Camelus dromedarius)

  • Abdollah Mohammadi-Sangcheshmeh
  • Abbas Shafiee
  • Ehsan Seyedjafari
  • Peyman Dinarvand
  • Abdolhakim Toghdory
  • Iman Bagherizadeh
  • Karl Schellander
  • Mehmet Ulas Cinar
  • Masoud Soleimani
Article

Abstract

Adipose-derived stem cells are an attractive alternative as a source of stem cells that can easily be extracted from adipose tissue. Isolation, characterization, and multi-lineage differentiation of adipose-derived stem cells have been described for human and a number of other species. Here we aimed to isolate and characterize camel adipose-derived stromal cell frequency and growth characteristics and assess their adipogenic, osteogenic, and chondrogenic differentiation potential. Samples were obtained from five adult dromedary camels. Fat from abdominal deposits were obtained from each camel and adipose-derived stem cells were isolated by enzymatic digestion as previously reported elsewhere for adipose tissue. Cultures were kept until confluency and subsequently were subjected to differentiation protocols to evaluate adipogenic, osteogenic, and chondrogenic potential. The morphology of resultant camel adipose-derived stem cells appeared to be spindle-shaped fibroblastic morphology, and these cells retained their biological properties during in vitro expansion with no sign of abnormality in karyotype. Under inductive conditions, primary adipose-derived stem cells maintained their lineage differentiation potential into adipogenic, osteogenic, and chondrogenic lineages during subsequent passages. Our observation showed that like human lipoaspirate, camel adipose tissue also contain multi-potent cells and may represent an important stem cell source both for veterinary cell therapy and preclinical studies as well.

Keywords

Adipose tissue Stem cell Adipogenic Osteogenic Chondrogenic Camelus dromedarius 

References

  1. Abu-Tarboush H. M.; Dawood A. A. Cholesterol and fat contents of animal adipose tissues. Food Chem. 46: 89–93; 1993.CrossRefGoogle Scholar
  2. Ahmad R.; Wolber W.; Eckardt S.; Koch P.; Schmitt J.; Semechkin R.; Geis C.; Heckmann M.; Brustle O.; Mclaughlin J. K.; Siren A. L.; Muller A. M. Functional neuronal cells generated by human parthenogenetic stem cells. PLoS One 7: e42800; 2012.PubMedCrossRefGoogle Scholar
  3. Ahmadbeigi N.; Shafiee A.; Seyedjafari E.; Gheisari Y.; Vassei M.; Amanpour S.; Amini S.; Bagherizadeh I.; Soleimani M. Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif. 44: 67–74; 2011a.PubMedCrossRefGoogle Scholar
  4. Ahmadbeigi N.; Soleimani M.; Gheisari Y.; Vasei M.; Amanpour S.; Bagherizadeh I.; Shariati S. A.; Azadmanesh K.; Amini S.; Shafiee A.; Arabkari V.; Nardi N. B. Dormant phase and multinuclear cells: two key phenomena in early culture of murine bone marrow mesenchymal stem cells. Stem Cells Dev. 20: 1337–1347; 2011b.PubMedCrossRefGoogle Scholar
  5. Al-Nbaheen M.; Vishnubalaji R.; Ali D.; Bouslimi A.; Al-Jassir F.; Megges M.; Prigione A.; Adjaye J.; Kassem M.; Aldahmash A. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev.; 2012. doi:10.1007/s12015-012-9365-8.
  6. Al-Sobayil F. A. Circadian rhythm of bone formation biomarkers in serum of dromedary camels. Res. Vet. Sci. 89: 455–459; 2010.PubMedCrossRefGoogle Scholar
  7. Arrigoni E.; Lopa S.; De Girolamo L.; Stanco D.; Brini A. T. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res. 338: 401–411; 2009.PubMedCrossRefGoogle Scholar
  8. Baksh D.; Song L.; Tuan R. S. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8: 301–316; 2004.PubMedCrossRefGoogle Scholar
  9. Braun J.; Hack A.; Weis-Klemm M.; Conrad S.; Treml S.; Kohler K.; Walliser U.; Skutella T.; Aicher W. K. Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am. J. Vet. Res. 71: 1228–1236; 2010.PubMedCrossRefGoogle Scholar
  10. Caplan A. I. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 11: 1198–1211; 2005.PubMedCrossRefGoogle Scholar
  11. Chan W. I.; Hannah R. L.; Dawson M. A.; Pridans C.; Foster D.; Joshi A.; Gottgens B.; Van Deursen J. M.; Huntly B. J. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells. Mol. Cell. Biol. 31: 5046–5060; 2011.PubMedCrossRefGoogle Scholar
  12. Furlani D.; Li W.; Pittermann E.; Klopsch C.; Wang L.; Knopp A.; Jungebluth P.; Thedinga E.; Havenstein C.; Westien I.; Ugurlucan M.; Li R. K.; Ma N.; Steinhoff G. A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart. Cell Transplant. 18: 319–331; 2009.PubMedCrossRefGoogle Scholar
  13. Furuya N.; Takenaga M.; Ohta Y.; Tokura Y.; Hamaguchi A.; Sakamaki A.; Kida H.; Handa H.; Nishine H.; Mineshita M.; Miyazawa T. Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats. Regen. Med. 7: 503–512; 2012.PubMedCrossRefGoogle Scholar
  14. Gheisari Y.; Azadmanesh K.; Ahmadbeigi N.; Nassiri S. M.; Golestaneh A. F.; Naderi M.; Vasei M.; Arefian E.; Mirab-Samiee S.; Shafiee A.; Soleimani M.; Zeinali S. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury. Stem Cells Dev.; 2012. doi:10.1089/scd.2011.0588.
  15. Gruber H. E.; Somayaji S.; Riley F.; Hoelscher G. L.; Norton H. J.; Ingram J.; Hanley Jr. E. N. Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech. Histochem. 87: 303–311; 2012.PubMedCrossRefGoogle Scholar
  16. Jiang Y.; Jahagirdar B. N.; Reinhardt R. L.; Schwartz R. E.; Keene C. D.; Ortiz-Gonzalez X. R.; Reyes M.; Lenvik T.; Lund T.; Blackstad M.; Du J.; Aldrich S.; Lisberg A.; Low W. C.; Largaespada D. A.; Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49; 2002.PubMedCrossRefGoogle Scholar
  17. Kisiel A. H.; McDuffee L. A.; Masaoud E.; Bailey T. R.; Esparza Gonzalez B. P.; Nino-Fong R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am. J. Vet. Res. 73: 1305–1317; 2012.PubMedCrossRefGoogle Scholar
  18. Li W. J.; Tuli R.; Huang X.; Laquerriere P.; Tuan R. S. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26: 5158–5166; 2005.PubMedCrossRefGoogle Scholar
  19. Marcacci M.; Kon E.; Moukhachev V.; Lavroukov A.; Kutepov S.; Quarto R.; Mastrogiacomo M.; Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13: 947–955; 2007.PubMedCrossRefGoogle Scholar
  20. Meligy F. Y.; Shigemura K.; Behnsawy H. M.; Fujisawa M.; Kawabata M.; Shirakawa T. The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell. Dev. Biol. Anim. 48: 203–215; 2012.PubMedCrossRefGoogle Scholar
  21. Minteer D.; Marra K. G.; Rubin J. P. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv. Biochem. Eng. Biotechnol.; 2012. doi:10.1007/10_2012_146.
  22. Miura M.; Miura Y.; Padilla-Nash H. M.; Molinolo A. A.; Fu B.; Patel V.; Seo B. M.; Sonoyama W.; Zheng J. J.; Baker C. C.; Chen W.; Ried T.; Shi S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24: 1095–1103; 2006.PubMedCrossRefGoogle Scholar
  23. Nadri S.; Soleimani M. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell. Dev. Biol. Anim. 43: 276–282; 2007.PubMedCrossRefGoogle Scholar
  24. Newman K. D.; Anderson D. E. Fracture management in alpacas and llamas. Vet. Clin. North Am. Food Anim. Pract. 25: 507–522; 2009.PubMedCrossRefGoogle Scholar
  25. Orbay H.; Tobita M.; Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int. 2012: 461718; 2012.PubMedGoogle Scholar
  26. Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.PubMedCrossRefGoogle Scholar
  27. Qu C. Q.; Zhang G. H.; Zhang L. J.; Yang G. S. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells. In Vitro Cell. Dev. Biol. Anim. 43: 95–100; 2007.PubMedCrossRefGoogle Scholar
  28. Razawi S. M.; Oryan A.; Bahrami S.; Mohammadalipour A.; Gowhari M. Prevalence of Cryptosporidium infection in camels (Camelus dromedarius) in a slaughterhouse in Iran. Trop. Biomed. 26: 267–273; 2009.PubMedGoogle Scholar
  29. Requicha J. F.; Viegas C. A.; Albuquerque C. M.; Azevedo J. M.; Reis R. L.; Gomes M. E. Effect of anatomical origin and cell passage number on the stemness and osteogenic differentiation potential of canine adipose-derived stem cells. Stem Cell Rev; 2012. doi:10.1007/s12015-012-9397-0.
  30. Rosland G. V.; Svendsen A.; Torsvik A.; Sobala E.; Mccormack E.; Immervoll H.; Mysliwietz J.; Tonn J. C.; Goldbrunner R.; Lonning P. E.; Bjerkvig R.; Schichor C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69: 5331–5339; 2009.PubMedCrossRefGoogle Scholar
  31. Seyedjafari E.; Soleimani M.; Ghaemi N.; Shabani I. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11: 3118–3125; 2010.CrossRefGoogle Scholar
  32. Shafiee A.; Kabiri M.; Ahmadbeigi N.; Yazdani S. O.; Mojtahed M.; Amanpour S.; Soleimani M. Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev. 20: 2077–2091; 2011a.PubMedCrossRefGoogle Scholar
  33. Shafiee A.; Seyedjafari E.; Soleimani M.; Ahmadbeigi N.; Dinarvand P.; Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol. Lett. 33: 1257–1264; 2011b.PubMedCrossRefGoogle Scholar
  34. Taha M. F.; Hedayati V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42: 211–216; 2010.PubMedCrossRefGoogle Scholar
  35. Toupadakis C. A.; Wong A.; Genetos D. C.; Cheung W. K.; Borjesson D. L.; Ferraro G. L.; Galuppo L. D.; Leach J. K.; Owens S. D.; Yellowley C. E. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am. J. Vet. Res. 71: 1237–1245; 2010.PubMedCrossRefGoogle Scholar
  36. Vidal M. A.; Walker N. J.; Napoli E.; Borjesson D. L. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev. 20: 273–283; 2012.Google Scholar
  37. Yoshimura H.; Muneta T.; Nimura A.; Yokoyama A.; Koga H.; Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 327: 449–462; 2007.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2013

Authors and Affiliations

  • Abdollah Mohammadi-Sangcheshmeh
    • 1
    • 2
  • Abbas Shafiee
    • 1
  • Ehsan Seyedjafari
    • 1
    • 3
  • Peyman Dinarvand
    • 1
  • Abdolhakim Toghdory
    • 4
  • Iman Bagherizadeh
    • 1
  • Karl Schellander
    • 5
  • Mehmet Ulas Cinar
    • 5
  • Masoud Soleimani
    • 1
    • 6
  1. 1.Stem Cell Biology DepartmentStem Cell Technology Research CenterTehranIran
  2. 2.Department of Animal and Poultry Science, College of AburaihanUniversity of TehranPakdashtIran
  3. 3.Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
  4. 4.Department of Animal ScienceGorgan University of Agricultural Science and Natural ResourcesGorganIran
  5. 5.Institute of Animal ScienceUniversity of BonnBonnGermany
  6. 6.Department of Hematology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations