Embryo–luteal cells co-culture: an in vitro model to evaluate steroidogenic and prostanoid bovine early embryo–maternal interactions

  • Ana Torres
  • Mariana Batista
  • Patrícia Diniz
  • Luisa Mateus
  • Luís Lopes-da-Costa


The role of progesterone (P4) and prostaglandins (PGs) in bovine early embryonic development and embryo–maternal crosstalk is almost unknown. Here, the in vitro steroidogenic (P4) and prostanoid (PGE2 and PGF2α) interactions between bovine embryos and luteal cells (LC) were evaluated. In two experiments, embryos (n = 1.900) were either co-cultured with LC or cultured alone, from days 2 to 7 (day 0 = in vitro insemination). LC were also cultured alone, and medium was used as a control, all groups being cultured either with or without oil overlay of culture medium. Oil overlay of culture medium significantly decreased the amount of P4, but not of PGE2 and PGF measured in culture medium. Embryos and LC had transcripts of genes coding for enzymes of the PGs (PTGS2, PGES, and PGFS) and P4 (StAR, P450scc, and 3β-HSD) synthesis pathways, and produced P4, PGF, and PGE2 into culture medium. Co-culture with LC exerted an embryotrophic effect, significantly increasing blastocyst yield and quality. This indicates a possible direct effect of LC in early embryo development. Embryos did not exert a luteotrophic effect upon LC. This may indicate that early embryos (until day 7) probably do not exert influence in LC main function. It is suggested that production of P4, PGE2, and PGF by early embryos may be associated to autocrine signaling leading to events in development and to paracrine signaling in the endometrium leading to local uterine receptivity.


Embryo Luteal cells Co-culture Progesterone Prostaglandins Bovine 



This study was funded by the grant PTDC/CVT/65690/2006 from Foundation for Science and Technology (FCT). Ana Torres was a Ph.D. fellow from FCT (SFRH/BD/37666/2007), and Mariana Batista had a research fellowship funded by the above grant. The authors thank Dr. Elisabete Silva for her assistance in real-time PCR analysis.


  1. Arosh J. A.; Banu S. K.; Chapdelaine P.; Emond V.; Kim J. J.; MacLaren L. A.; Fortier M. A. Molecular cloning and characterization of bovine prostaglandin E2 receptors EP2 and EP4: expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 144: 3076–3091; 2003.PubMedCrossRefGoogle Scholar
  2. Arosh J. A.; Banu S. K.; Chapdelaine P.; Fortier M. A. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology 145: 407–417; 2004.PubMedCrossRefGoogle Scholar
  3. Baskar J. F.; Torchiana D. F.; Biggers J. D.; Corey E. J.; Andersen N. H.; Subramanian N. Inhibition of hatching of mouse blastocysts in-vitro by various prostaglandin antagonists. J. Reprod. Fertil. 63: 359–363; 1981.PubMedCrossRefGoogle Scholar
  4. Batista M.; Torres A.; Diniz P.; Mateus L.; Lopes-da-Costa L. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos. In Vitro Cell. Dev. Biol. Anim. 48(9): 583–592; 2012.PubMedCrossRefGoogle Scholar
  5. Carter F.; Forde N.; Duffy P.; Wade M.; Fair T.; Crowe M. A.; Evans A. C.; Kenny D. A.; Roche J. F.; Lonergan P. Effect of increasing progesterone concentration from day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20(3): 368–375; 2008.Google Scholar
  6. Carter F.; Rings F.; Mamo S.; Holker M.; Kuzmany A.; Besenfelder U.; Havlicek V.; Mehta J. P.; Tesfaye D.; Schellander K.; Lonergan P. Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct. Biol. Reprod. 83(5): 707–719; 2010.PubMedCrossRefGoogle Scholar
  7. Chagas e Silva J.; Lopes-da-Costa L. Luteotrophic influence of early bovine embryos and the relationship between plasma progesterone concentrations and embryo survival. Theriogenology 64: 49–60; 2005.PubMedCrossRefGoogle Scholar
  8. Charpigny G.; Reinaud P.; Tamby J. P.; Creminon C.; Guillomot M. Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol. Reprod. 57: 1032–1040; 1997.PubMedCrossRefGoogle Scholar
  9. Chida S.; Uehara S.; Hoshiai H.; Yajima A. Effects of indomethacin, prostaglandin E2, prostaglandin F2 alpha and 6-keto-prostaglandin F1 alpha on hatching of mouse blastocysts. Prostaglandins 31(2): 337–342; 1986.PubMedGoogle Scholar
  10. Clemente M.; de La Fuente J.; Fair T.; Al Naib A.; Gutierrez-Adan A.; Roche J. F.; Rizos D.; Lonergan P. Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138(3): 507–517; 2009.PubMedCrossRefGoogle Scholar
  11. Dickmann Z.; Dey S. K.; Gupta J. S. Steroidogenesis in rabbit preimplantation embryos. Proc. Natl. Acad. Sci. U. S. A. 72(1): 298–300; 1975.PubMedCrossRefGoogle Scholar
  12. Einer-Jensen N. Countercurrent transfer in the ovarian pedicle and its physiological implication. Oxf. Rev. Reprod. Biol. 10: 348–381; 1988.PubMedGoogle Scholar
  13. Einer-Jensen N.; Hunter R. Counter-current transfer in reproductive biology. Reproduction 129(1): 9–18; 2005.PubMedCrossRefGoogle Scholar
  14. El-Sayed A.; Hoelker M.; Rings F.; Salilew D.; Jennen D.; Tholen E.; Sirard M. A.; Schellander K.; Tesfaye D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28: 84–96; 2006.PubMedCrossRefGoogle Scholar
  15. Ferguson C. E.; Kesler D. J.; Godke R. A. Progesterone enhances in-vitro development of bovine embryos. Theriogenology 77: 108–114; 2012.PubMedCrossRefGoogle Scholar
  16. Forde N.; Carter F.; Fair T.; Crowe M. A.; Evans A. C.; Spencer T. E.; Bazer F. W.; McBride R.; Boland M. P.; O’Gaora P.; Lonergan P.; Roche J. F. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81(4): 784–794; 2009.PubMedCrossRefGoogle Scholar
  17. Forde N.; Carter F.; Spencer T. E.; Bazer F. W.; Sandra O.; Mansouri-Attia N.; Okumu L. A.; McGettigan P. A.; Mehta J. P.; McBride R.; O’Gaora P.; Roche J. F.; Lonergan P. Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85: 144–156; 2011.PubMedCrossRefGoogle Scholar
  18. Fridén B. E.; Hagström H.; Lindblom B.; Sjöblom P.; Wallin A.; Brännström M.; Hahlin M. Cell characteristics and function of two enriched fraction of human LC prolonged culture. Mol. Hum. Reprod. 5(8): 714–719; 1999.PubMedCrossRefGoogle Scholar
  19. Garrett J. E.; Geisert R. D.; Zavy M. T.; Morgan G. L. Evidence for maternal regulation of early conceptus growth and development in beef cattle. J. Reprod. Fertil. 84: 437–446; 1988.PubMedCrossRefGoogle Scholar
  20. Ghaemi S. R.; Salehnia M.; Valojerdi M. R. The effect of progesterone and exogenous gonadotropin on pre-implantation mouse embryo development and implantation. Exp. Anim. 57: 27–34; 2008.PubMedCrossRefGoogle Scholar
  21. Ginther O. J. Internal regulation of physiological processes through local venoarterial pathways: a review. J. Anim. Sci. 39(3): 550–564; 1974.PubMedGoogle Scholar
  22. Goff A. K.; Smith L. C. Effect of steroid treatment of endometrial cells on blastocyst development during co-culture. Theriogenology 49(5): 1021–1030; 1998.PubMedCrossRefGoogle Scholar
  23. Green M. P.; Hunter M. G.; Mann G. E. Relationships between maternal hormone secretion and embryo development on day 5 of pregnancy in dairy cows. Anim. Reprod. Sci. 88(3–4): 179–189; 2005.Google Scholar
  24. Holm P.; Booth P. J.; Schmidt M. H.; Greve T.; Callesen H. High bovine blastocyst development in a static in-vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52(4): 683–700; 1999.PubMedCrossRefGoogle Scholar
  25. Huang J. C.; Wan W.-S.-A.; Goldsby J. S.; Wu K. K. Cyclooxygenase 2 derived endogenous prostacyclin enhances mouse embryo hatching. Hum. Reprod. 19: 2900–2906; 2004.PubMedCrossRefGoogle Scholar
  26. Hwang D. H.; Pool S. H.; Rorie R. W.; Boudreau M.; Godke R. A. Transitional changes in arachidonic acid metabolism by bovine embryos at different developmental stages. Prostaglandins 35(3): 387–402; 1988.PubMedGoogle Scholar
  27. Ireland J. J.; Murphee R. L.; Coulson P. B. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63: 155–160; 1980.PubMedCrossRefGoogle Scholar
  28. Jensen J.; Ørntoft T. Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization—applied to bladder- and colon-cancer data-sets. Cancer Res. 64: 5245–5250; 2004.PubMedCrossRefGoogle Scholar
  29. Juengel J. L.; Niswender G. D. Molecular regulation of luteal progesterone synthesis in domestic animals. J. Reprod. Fertil. 54: 193–205; 1999.Google Scholar
  30. Kennedy T. G.; Gillio-Meina C.; Phang S. H. Prostaglandins and the initiation of blastocyst implantation and decidualization. Reproduction 134(5): 635–643; 2007.PubMedCrossRefGoogle Scholar
  31. Kenngott R. A.; Vermehren M.; Sauer U.; Ebach K.; Sinowatz F. Cellular expression and localization of estrogen receptor α and progesterone receptor mRNA in the bovine oviduct combining laser-assisted microdissection, quantitative PCR, and in situ hybridization. J. Histochem. Cytochem. 59(3): 312–327; 2011.PubMedCrossRefGoogle Scholar
  32. Larson J. E.; Krisher R. L.; Lamb G. C. Effects of supplemental progesterone on the development, metabolism and blastocyst cell number of bovine embryos produced in-vitro. Reprod. Fertil. Dev. 23: 311–318; 2011.PubMedCrossRefGoogle Scholar
  33. Lewis G. S.; Thatcher W. W.; Bazer F. W.; Curl J. S. Metabolism of arachidonic acid in-vitro by bovine blastocysts and endometrium. Biol. Reprod. 27: 431–439; 1982.PubMedCrossRefGoogle Scholar
  34. Mamo S.; Mehta J. P.; Forde N.; McGettigan P.; Lonergan P. Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87: 1–9; 2012.CrossRefGoogle Scholar
  35. Mann G. E.; Lamming G. E. Progesterone inhibition of the development of the luteolytic signal in cows. J. Reprod. Fertil. 104(1): 1–5; 1995.PubMedCrossRefGoogle Scholar
  36. Mann G. E.; Lamming G. E. Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121: 175–180; 2001.PubMedCrossRefGoogle Scholar
  37. Merlo B.; Iacono E.; Mari G. Effect of progesterone and epidermal growth factor on in-vitro-produced eight-cell bovine embryos in a serum free culture medium. Reprod. Fertil. Dev. 19: 211; 2006.CrossRefGoogle Scholar
  38. Miller K. F.; Pursei V. G. Absorption of compounds in medium by the oil covering microdrop cultures. Gamete Res. 17: 57–61; 1987.PubMedCrossRefGoogle Scholar
  39. Mishra S.; Lei Z. M.; Rao C. V. A novel role of luteinizing hormone in the embryo development in cocultures. Biol. Reprod. 68: 1455–1462; 2003.PubMedCrossRefGoogle Scholar
  40. Miyamoto Y.; Skarzynski D. J.; Okuda K. Is tumor necrosis factorvalpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol. Reprod. 62(5): 1109–1115; 2000.PubMedCrossRefGoogle Scholar
  41. Okumu L. A.; Forde N.; Fahey A. G.; Fitzpatrick E.; Roche J. F.; Crowe M. A.; Lonergan P. The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus. Reproduction 140(1): 143–153; 2010.PubMedCrossRefGoogle Scholar
  42. Orsi N. M.; Reischl J. B. Mammalian embryo co-culture: trials and tribulations of a misunderstood method. Theriogenology 67(3): 441–458; 2007.PubMedCrossRefGoogle Scholar
  43. Parrish J. J.; Krogenaes A.; Susko-Parrish J. L. Effect of bovine sperm separation by either swim-up or Percoll method on success of in-vitro fertilization and early embryonic development. Theriogenology 44: 859–869; 1995.PubMedCrossRefGoogle Scholar
  44. Pereira R. M.; Marques C. C.; Baptista M. C.; Vasques M. I.; Horta A. E. M. Effect of prostaglandins on preimplantation bovine embryos. Reprod. Domest. Anim. 40(4): 366; 2005a.Google Scholar
  45. Pereira R. M.; Marques C. C.; Baptista M. C.; Vasques M. I.; Horta A. E. M. Embryos and culture cells: a model for studying the effect of progesterone. Anim. Reprod. Sci. 111: 31–40; 2009.PubMedCrossRefGoogle Scholar
  46. Pereira R. M.; Pimenta J.; Becker J. D.; Baptista M. C.; Vasques M. I.; Horta A. E. M.; Marques C. C. Cyclooxygenase-2 (COX-2) expression by in vitro produced bovine embryos. Preliminary results. RPCV 104(555–556): 181–184; 2005b.Google Scholar
  47. Pereira R. M.; Vasques M. I.; Cunha T. P.; Marques C. C.; Baptista M. C.; Horta A. E. M. Bovine embryos and prostaglandins (PG) induce progesterone (P4) secretion by granulosa cells in vitro. Reprod. Domest. Anim. 41: 335; 2006.Google Scholar
  48. Rizos D.; Scully S.; Kelly A. K.; Ealy A. D.; Moros R.; Duffy P.; Al Naib A.; Forde N.; Lonergan P. Effects of human chorionic gonadotrophin administration on day 5 after oestrus on corpus luteum characteristics, circulating progesterone and conceptus elongation in cattle. Reprod. Fertil. Dev. 24(3): 472–481; 2012.Google Scholar
  49. Robinson R. S.; Mann G. E.; Lamming G. E.; Wathes D. C. Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples the oestrous cycle and early pregnancy in cows. Reproduction 122: 965–979; 2001.PubMedCrossRefGoogle Scholar
  50. Rodbard D.; Ruder H. J.; Vaitukaitis J.; Jacobs H. S. Mathematical analysis of kinetics of radioligand assays: improved sensitivity obtained by delayed addition of labeled ligand. J. Clin. Endocrinol. Metab. 33(2): 343–355; 1971.PubMedCrossRefGoogle Scholar
  51. Rueda B. R.; Hendry I. R.; Hendry III W. J.; Stormshak F.; Slayden O. D.; Davis J. S. Decreased progesterone levels and progesterone receptor antagonists promote apoptotic cell death in bovine LC. Biol. Reprod. 62: 269–276; 2000.PubMedCrossRefGoogle Scholar
  52. Saint-Dizier M.; Guyader-Joly C.; Charpigny G.; Grimard B.; Humblot P.; Ponter A. A. Expression of enzymes involved in the synthesis of prostaglandin E2 in bovine in-vitro-produced embryos. Zygote 19(3): 277–283; 2011.PubMedCrossRefGoogle Scholar
  53. Satterfield M. C.; Bazer F. W.; Spencer T. E. Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75: 289–296; 2006.PubMedCrossRefGoogle Scholar
  54. Sayre B. L. Effect of prostaglandins E2 and F2α on in vitro development and hatching of caprine blastocysts. Small Rumin. Res. 67: 257–263; 2007.CrossRefGoogle Scholar
  55. Sayre B. L.; Lewis G. S. Arachidonic acid metabolism during early development of ovine embryos: a possible relationship to shedding of the zona pellucida. Prostaglandins 45(6): 557–569; 1993.PubMedGoogle Scholar
  56. Scenna F. N.; Edwards J. L.; Pighetti G. M.; Schrick F. N. Presence of prostaglandin F2α receptor in in vitro-derived morula and blastocyst stage bovine embryos. Reprod. Fertil. Dev. 18(1): 180; 2006.CrossRefGoogle Scholar
  57. Seifer D. B.; Freeman M. R.; Gardiner A. C.; Hill G. A.; Schneyer A. L.; Vanderhyden B. C. Autologous granulosa cell coculture demonstrates zygote suppression of granulosa cell steroidogenesis. Fertil. Steril. 66(3): 425–429; 1996.PubMedGoogle Scholar
  58. Shariff N. A.; Xu S. X.; Williams G. W.; Crider J. Y.; Griffin B. W.; Davis T. L. Pharmacology of [3H] prostaglandin E1/[3H] prostaglandin E2 and [3H] prostaglandin F2 binding to EP3 and FP prostaglandin receptor binding sites in bovine corpus luteum: characterization and correlation with functional data. Pharmacol. Exp. Ther. 286: 1094–1102; 1998.Google Scholar
  59. Shemesh M.; Mllaguir F.; Ayalon N.; Hansel W. Steroidogenesis and prostaglandin synthesis by cultured bovine blastocysts. J. Reprod. Fertil. 56: 181–185; 1979.PubMedCrossRefGoogle Scholar
  60. Skarzynski D. J.; Okuda K. Sensitivity of bovine corpora lutea to prostaglandin F2α is dependent on progesterone, oxytocin and prostaglandins. Biol. Reprod. 60: 1292–1298; 1999.PubMedCrossRefGoogle Scholar
  61. Sreenan J. M. Egg transfer in the cow: effect of site of transfer. In Proceedings 8th International Congress on Animal Reproduction and A.I. 3: 269–272; 1976.Google Scholar
  62. Stone B. A.; Seamark R. F.; Kelly R. W.; Deam S. Production of steroids and release of prostaglandins by spherical pig blastocysts in-vitro. Aust. J. Biol. Sci. 39(3): 283–293; 1986.PubMedGoogle Scholar
  63. Stringfellow D. A.; Seidel S. M. (eds). Manual of the International Embryo Transfer Society. International Embryo Transfer Society, Inc., Savoy; 1998.Google Scholar
  64. Tae J. C.; Kim E. Y.; Lee W. D.; Park S. P.; Lim J. H. Sterile filtered paraffin oil supports in-vitro developmental competence in bovine embryos comparable to co-culture. J. Assist. Reprod. Genet. 23(3): 121–127; 2006.PubMedCrossRefGoogle Scholar
  65. Thibodeaux J. K.; Broussard J. R.; Godke R. A.; Hansel W. Stimulation of progesterone production in bovine LC by co-incubation with bovine blastocyst-stage embryos or trophoblastic vesicles. J. Reprod. Fertil. 101(3): 657–662; 1994.PubMedCrossRefGoogle Scholar
  66. Vasques M. I.; Marques C. M.; Pereira R. M.; Batista M. C.; Horta A. E. M. Luteotrophic effect of bovine embryos and different sera supplementation on granulose cell monolayers in-vitro. RPCV 525: 25–30; 1998.Google Scholar
  67. Weems C. W.; Lee C. N.; Weems Y. S.; Vincent D. L. Distribution of progesterone to the uterus and associated vasculature of cattle. Endocrinol. Jpn. 35(4): 625–630; 1988.PubMedCrossRefGoogle Scholar
  68. Weems Y. S.; Bridges P. J.; Jeoung M.; Arreguin-Arevalo J. A.; Nett T. M.; Vann R. C.; Ford S. P.; Lewis A. W.; Neuendorff D. A.; Welsh Jr. T. H.; Randel R. D.; Weems C. W. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A–D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue. Prostaglandins Other Lipid Mediat 97(1–2): 60–65; 2012.PubMedCrossRefGoogle Scholar
  69. Weems Y. S.; Lammoglia M. A.; Vera-Avilla H.; Randel R. D.; Sasser R. G.; Weems C. W. Effect of luteinizing hormone (LH), PGE2, 8-Epi-PGE1, 8-Epi-PGE2, trichosanthin, and pregnancy specific protein B (PSPB) on secretion of prostaglandin E(PGE) or PGF2α in-vitro by corpora lutea (CL) from non pregnant and pregnant cows. Prostaglandins 55: 359–376; 1998.Google Scholar
  70. Wilson J. M.; Zalesku D. D.; Looney C. R.; Bondioli K. R.; Magness R. R. Hormone secretion by preimplantation embryos in a dynamic in-vitro culture system. Biol. Reprod. 46: 295–300; 1992.PubMedCrossRefGoogle Scholar
  71. Zhao S.; Fernald R. D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12: 1047–1064; 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2012

Authors and Affiliations

  • Ana Torres
    • 1
  • Mariana Batista
    • 1
  • Patrícia Diniz
    • 1
  • Luisa Mateus
    • 1
  • Luís Lopes-da-Costa
    • 1
  1. 1.Reproduction and Obstetrics, CIISA, Faculty of Veterinary MedicineTechnical University of LisbonLisbonPortugal

Personalised recommendations