Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors

  • Harsha Pawani
  • Punam Nagvenkar
  • Prasad Pethe
  • Deepa Bhartiya


Human embryonic stem cells (hESCs) have the ability to differentiate into all the three lineages and are an ideal starting material to obtain cells of desired lineage for regenerative medicine. Continued efforts are needed to evolve more robust protocols to obtain cells of desired lineages and in larger numbers. Also, it has now been realized that rather than transplanting fully committed cells differentiated in vitro, it may be ideal to transplant committed progenitors which retain the intrinsic ability to proliferate and also differentiate better into multiple lineages based on the in vivo cues. For cardiac regeneration, the desired progenitor is a multipotent cardiovascular progenitor which has the ability to regenerate cardiomyocytes, endothelial cells, and also smooth muscle cells. The present study was undertaken to carefully compare three widely used protocols to differentiate hESCs into cardiac progenitors, viz., spontaneous differentiation, differentiation by END-2-conditioned medium, and directed differentiation using growth factors followed by quantitative PCR to study the relative expression of early cardiovascular markers. hESC differentiation mimicked the early embryonic development, and the transition into mesoendoderm, mesoderm, early cardiac progenitors, and cardiac cells associated with spontaneous beating was clearly evident in all the three groups. However, compared to spontaneous and END-2-associated differentiation, directed differentiation led to several-fold higher expression of cardiac transcripts (>75-fold Nkx2.5 and >150-fold Tbx5) in response to the stage-specific addition of well-established cardiogenic inducers and inhibitors of specific signaling pathways. We propose to use tripotent cardiovascular progenitors derived by directed differentiation for further preclinical studies.


Human embryonic stem cells Cardiomyocytes Progenitors Differentiation 


  1. Abdel-Latif A.; Bolli R.; Tleyjeh I. M.; Montori V. M.; Perin E. C.; Hornung C. A.; Zuba-Surma E. K.; Al-Mallah M.; Dawn B. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med. 167: 989–997; 2007.PubMedCrossRefGoogle Scholar
  2. Beltrami A. P.; Barlucchi L.; Torella D.; Baker M.; Limana F.; Chimenti S.; Kasahara H.; Rota M.; Musso E.; Urbanek K.; Leri A.; Kajstura J.; Nadal-Ginard B.; Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776; 2003.PubMedCrossRefGoogle Scholar
  3. Beqqali A.; Kloots J.; Ward-van O. D.; Mummery C.; Passier R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24: 1956–1967; 2006.PubMedCrossRefGoogle Scholar
  4. Bernardo A. S.; Faial T.; Gardner L.; Niakan K. K.; Ortmann D.; Senner C. E.; Callery E. M.; Trotter M. W.; Hemberger M.; Smith J. C.; Bardwell L.; Moffett A.; Pedersen R. A. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9: 144–155; 2011.PubMedCrossRefGoogle Scholar
  5. Boheler K. R.; Joodi R. N.; Qiao H.; Juhasz O.; Urick A. L.; Chuppa S. L.; Gundry R. L.; Wersto R. P.; Zhou R. Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration. Stem Cells Int. 2011: 214203; 2011.PubMedGoogle Scholar
  6. Burridge P. W.; Anderson D.; Priddle H.; Barbadillo Munoz M. D.; Chamberlain S.; Allegrucci C.; Young L. E.; Denning C. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25: 929–938; 2007.PubMedCrossRefGoogle Scholar
  7. Burridge P. W.; Thompson S.; Millrod M. A.; Weinberg S.; Yuan X.; Peters A.; Mahairaki V.; Koliatsos V. E.; Tung L.; Zambidis E. T. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6: e18293; 2011.PubMedCrossRefGoogle Scholar
  8. Cai C. L.; Liang X.; Shi Y.; Chu P. H.; Pfaff S. L.; Chen J.; Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5: 877–889; 2003.PubMedCrossRefGoogle Scholar
  9. Caspi O.; Huber I.; Kehat I.; Habib M.; Arbel G.; Gepstein A.; Yankelson L.; Aronson D.; Beyar R.; Gepstein L. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50: 1884–1893; 2007.PubMedCrossRefGoogle Scholar
  10. Cerdan C.; McIntyre B. A.; Mechael R.; Levadoux-Martin M.; Yang J.; Lee J. B.; Bhatia M. Activin A promotes hematopoietic fated mesoderm development through upregulation of Brachyury in human embryonic stem cells. Stem Cells Dev. 21: 2866–2877; 2012.PubMedCrossRefGoogle Scholar
  11. Chen H. F.; Kuo H. C.; Chien C. L.; Shun C. T.; Yao Y. L.; Ip P. L.; Chuang C. Y.; Wang C. C.; Yang Y. S.; Ho H. N. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum. Reprod. 22: 567–577; 2007.PubMedCrossRefGoogle Scholar
  12. Dai W.; Field L. J.; Rubart M.; Reuter S.; Hale S. L.; Zweigerdt R.; Graichen R. E.; Kay G. L.; Jyrala A. J.; Colman A.; Davidson B. P.; Pera M.; Kloner R. A. Survival and maturation of human embryonic stem cell-derived cardiomyocyte in rat hearts. J. Mol. Cell. Cardiol. 43: 504–516; 2007.PubMedCrossRefGoogle Scholar
  13. David R.; Jarsch V. B.; Schwarz F.; Nathan P.; Gegg M.; Lickert H.; Franz W. M. Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc. Res. 92: 115–122; 2011.PubMedCrossRefGoogle Scholar
  14. Dubois N. C.; Craft A. M.; Sharma P.; Elliott D. A.; Stanley E. G.; Elefanty A. G.; Gramolini A.; Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29: 1011–1018; 2011.PubMedCrossRefGoogle Scholar
  15. Graichen R.; Xu X.; Braam S. R.; Balakrishnan T.; Norfiza S.; Sieh S.; Soo S. Y.; Tham S. C.; Mummery C.; Colman A.; Zweigerdt R.; Davidson B. P. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76: 357–370; 2008.PubMedCrossRefGoogle Scholar
  16. Kattman S. J.; Huber T. L.; Keller G. M. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11: 723–732; 2006.PubMedCrossRefGoogle Scholar
  17. Kehat I.; Kenyagin-Karsenti D.; Snir M.; Segev H.; Amit M.; Gepstein A.; Livne E.; Binah O.; Itskovitz-Eldor J.; Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108: 407–414; 2001.PubMedGoogle Scholar
  18. Kumar N.; Hinduja I.; Nagvenkar P.; Pillai L.; Zaveri K.; Mukadam L.; Telang J.; Desai S.; Mangoli V.; Mangoli R.; Padgaonkar S.; Kaur G.; Puri C.; Bhartiya D. Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev. 18: 435–445; 2009.PubMedCrossRefGoogle Scholar
  19. Laflamme M. A.; Chen K. Y.; Naumova A. V.; Muskheli V.; Fugate J. A.; Dupras S. K.; Reinecke H.; Xu C.; Hassanipour M.; Police S.; O’Sullivan C.; Collins L.; Chen Y.; Minami E.; Gill E. A.; Ueno S.; Yuan C.; Gold J.; Murry C. E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25: 1015–1024; 2007.PubMedCrossRefGoogle Scholar
  20. Laugwitz K. L.; Moretti A.; Lam J.; Gruber P.; Chen Y.; Woodard S.; Lin L. Z.; Cai C. L.; Lu M. M.; Reth M.; Platoshyn O.; Yuan J. X.; Evans S.; Chien K. R. Postnatal isl1 cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–653; 2005.PubMedCrossRefGoogle Scholar
  21. Leor J.; Gerecht S.; Cohen S.; Miller L.; Holbova R.; Ziskind A.; Shachar M.; Feinberg M. S.; Guetta E.; Itskovitz-Eldor J. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93: 1278–1284; 2007.PubMedCrossRefGoogle Scholar
  22. Mauritz C.; Martens A.; Rojas S. V.; Schnick T.; Rathert C.; Schecker N.; Menke S.; Glage S.; Zweigerdt R.; Haverich A.; Martin U.; Kutschka I. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur. Heart J. 32: 2634–2641; 2011.PubMedCrossRefGoogle Scholar
  23. Menasche P. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis. 50: 7–17; 2007.PubMedCrossRefGoogle Scholar
  24. Messina E.; De Angelis L.; Frati G.; Morrone S.; Chimenti S.; Fiordaliso F.; Salio M.; Battaglia M.; Latronico M. V.; Coletta M.; Vivarelli E.; Frati L.; Cossu G.; Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95: 911–921; 2004.PubMedCrossRefGoogle Scholar
  25. Moretti A.; Caron L.; Nakano A.; Lam J. T.; Bernshausen A.; Chen Y.; Qyang Y.; Bu L.; Sasaki M.; Martin-Puig S.; Sun Y.; Evans S. M.; Laugwitz K. L.; Chien K. R. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151–1165; 2006.PubMedCrossRefGoogle Scholar
  26. Mummery C.; Ward D.; van den Brink C. E.; Bird S. D.; Doevendans P. A.; Opthof T.; Brutel de la Riviere A.; Tertoolen L.; van der Heyden M.; Pera M. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200: 233–242; 2002.PubMedCrossRefGoogle Scholar
  27. Mummery C.; Ward W.; Passier R. Differentiation of human embryonic stem cells to cardiomyocytes by co-culture with endoderm in serum-free medium. Curr. Protoc. Stem Cell Biol. Chap 1:Unit 1F.2; 2007.Google Scholar
  28. Mummery C.; Ward-van Oostwaard D.; Doevendans P.; Spijker R.; van den Brink S.; Hassink R.; van der Heyden M.; Opthof T.; Pera M.; de la Riviere A. B.; Passier R.; Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107: 2733–2740; 2003.PubMedCrossRefGoogle Scholar
  29. Murry C. E.; Whitney M. L.; Reinecke H. Muscle cell grafting for the treatment and prevention of heart failure. J. Card. Fail. 8: S532–S541; 2002.PubMedCrossRefGoogle Scholar
  30. Nagvenkar P.; Pethe P.; Pawani H.; Telang J.; Kumar N.; Hinduja I.; Zaveri K.; Bhartiya D. Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cell. Dev. Biol. Anim. 47: 406–419; 2011.PubMedCrossRefGoogle Scholar
  31. Narazaki G.; Uosaki H.; Teranishi M.; Okita K.; Kim B.; Matsuoka S.; Yamanaka S.; Yamashita J. K. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118: 498–506; 2008.PubMedCrossRefGoogle Scholar
  32. Oh H.; Bradfute S. B.; Gallardo T. D.; Nakamura T.; Gaussin V.; Mishina Y.; Pocius J.; Michael L. H.; Behringer R. R.; Garry D. J.; Entman M. L.; Schneider M. D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. U. S. A. 100: 12313–12318; 2003.PubMedCrossRefGoogle Scholar
  33. Reinecke H.; Zhang M.; Bartosek T.; Murry C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100: 193–202; 1999.PubMedCrossRefGoogle Scholar
  34. Roger V. L.; Go A. S.; Lloyd-Jones D. M.; Adams R. J.; Berry J. D.; Brown T. M.; Carnethon M. R.; Dai S.; de Simone G.; Ford E. S.; Fox C. S.; Fullerton H. J.; Gillespie C.; Greenlund K. J.; Hailpern S. M.; Heit J. A.; Ho P. M.; Howard V. J.; Kissela B. M.; Kittner S. J.; Lackland D. T.; Lichtman J. H.; Lisabeth L. D.; Makuc D. M.; Marcus G. M.; Marelli A.; Matchar D. B.; McDermott M. M.; Meigs J. B.; Moy C. S.; Mozaffarian D.; Mussolino M. E.; Nichol G.; Paynter N. P.; Rosamond W. D.; Sorlie P. D.; Stafford R. S.; Turan T. N.; Turner M. B.; Wong N. D.; Wylie-Rosett J.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123: e18–e209; 2011.PubMedCrossRefGoogle Scholar
  35. Segev H.; Kenyagin-Karsenti D.; Fishman B.; Gerecht-Nir S.; Ziskind A.; Amit M.; Coleman R.; Itskovitz-Eldor J. Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Dev. Growth Differ. 47: 295–306; 2005.PubMedCrossRefGoogle Scholar
  36. Shimizu T.; Yamato M.; Kikuchi A.; Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7: 141–151; 2001.PubMedCrossRefGoogle Scholar
  37. Smits A. M.; van Vliet P.; Metz C. H.; Korfage T.; Sluijter J. P.; Doevendans P. A.; Goumans M. J. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomycoytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat. Protoc. 4: 232–243; 2009.PubMedCrossRefGoogle Scholar
  38. Vallier L.; Touboul T.; Chng Z.; Brimpari M.; Hannan N.; Millan E.; Smithers L. E.; Trotter M.; Rugg-Gunn P.; Weber A.; Pedersen R. A. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4: e6082; 2009.PubMedCrossRefGoogle Scholar
  39. van Laake L. W.; Passier R.; Monshouwer-Kloots J.; Nederhoff M. G.; Ward-van Oostwaard D.; Field L. J.; van Echteld C. J.; Doevendans P. A.; Mummery C. L. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat. Protoc. 2: 2551–2567; 2007a.PubMedCrossRefGoogle Scholar
  40. van Laake L. W.; Passier R.; Monshouwer-Kloots J.; Verkleij A. J.; Lips D. J.; Freund C.; den Ouden K.; Ward-van Oostwaard D.; Korving J.; Tertoolen L. G.; van Echteld C. J.; Doevendans P. A.; Mummery C. L. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1: 9–24; 2007b.PubMedCrossRefGoogle Scholar
  41. World Health Organization. Factsheet no. 317—cardiovascular diseases. http://www.who.int/mediacentre/factsheets/fs317/en/index.html; 2011. Accessed 11 May 2012.
  42. Wu S. M.; Fujiwara Y.; Cibulsky S. M.; Clapham D. E.; Lien C. L.; Schultheiss T. M.; Orkin S. H. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137–1150; 2006.PubMedCrossRefGoogle Scholar
  43. Xu C.; Police S.; Rao N.; Carpenter M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91: 501–508; 2002.PubMedCrossRefGoogle Scholar
  44. Xu X. Q.; Graichen R.; Soo S. Y.; Balakrishnan T.; Rahmat S. N.; Sieh S.; Tham S. C.; Freund C.; Moore J.; Mummery C.; Colman A.; Zweigerdt R.; Davidson B. P. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76: 958–970; 2008.PubMedGoogle Scholar
  45. Yang J.; Yamato M.; Okano T. Cell-sheet engineering using intelligent surfaces. MRS Bull. 30: 189–193; 2005.CrossRefGoogle Scholar
  46. Yang L.; Soonpaa M. H.; Adler E. D.; Roepke T. K.; Kattman S. J.; Kennedy M.; Henckaerts E.; Bonham K.; Abbott G. W.; Linden R. M.; Field L. J.; Keller G. M. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453: 524–528; 2008.PubMedCrossRefGoogle Scholar
  47. Zhang M.; Methot D.; Poppa V.; Fujio Y.; Walsh K.; Murry C. E. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33: 907–921; 2001.PubMedCrossRefGoogle Scholar
  48. Zhu W. Z.; Hauch K. D.; Xu C.; Laflamme M. A. Human embryonic stem cells and cardiac repair. Transplant. Rev. (Orlando) 23: 53–68; 2009.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2012

Authors and Affiliations

  • Harsha Pawani
    • 1
  • Punam Nagvenkar
    • 1
  • Prasad Pethe
    • 1
  • Deepa Bhartiya
    • 1
  1. 1.Stem Cell Biology DepartmentNational Institute for Research in Reproductive HealthMumbaiIndia

Personalised recommendations