E-Screen evaluation of sugar beet feedstuffs in a case of reduced embryo transfer efficiencies in cattle: the role of phytoestrogens and zearalenone

Article
  • 213 Downloads

Abstract

The E-Screen assay was used to evaluate the estrogenicity of sugar beet by-products obtained from a dairy farm experiencing low success rates of embryo transfer. The beet tailings had ~3-fold the estradiol equivalents of the pelleted beet pulp (3.9 and 1.2 μg estradiol equivalents or E2Eq/kg dry matter, respectively). Whole sugar beets, sugar beet pellets, and shreds from several Midwest US locations were also evaluated by E-Screen. All pellets examined were found to have some estrogenic activity (range ~0.1–2.0 μg E2Eq/kg DM) with a mean of 0.46 μg/kg dry matter and median of 0.28 μg/kg dry matter. Relative E2Eq ranked as follows: pellets > shreds > most unprocessed roots. Using recommended feeding levels and conservative absorption estimates (10%), the estrogenic activity in the original samples could result in blood estradiol equivalents ≥ those found at estrus (10 pg/mL, cows). Chemical analyses revealed no known phytoestrogens, but the estrogenic mycotoxin, zearalenone, was found in 15 of 21 samples. Of significance to those using the E-Screen are our findings that contradict previous reports: ß-sitosterol has no proliferative effect and genistein’s glucuronidated form—genistin—is equal to genistein in proliferative effect. The latter is the result of deconjugation of genistin to genistein in the presence of fetal bovine serum (determined by LC MSMS). These data show the usefulness and caveats of the E-Screen in evaluation of feedstuffs, and indicate a potential for sugar beet by-products to contain zearalenone at concentrations that may impact reproduction.

Keywords

MCF-7 Estrogenicity Subfertility Zearalenone Sugar beets 

Supplementary material

11626_2012_9489_MOESM1_ESM.doc (32 kb)
ESM 1(DOC 31 kb)

References

  1. Allred C. A.; Ju Y. H.; Alllred K. F.; Chang J.; Helferich W. G. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis. 22: 1667–1673; 2001.PubMedCrossRefGoogle Scholar
  2. AOAC. 2000. Official Methods of Analysis 994.10 (Modified). 17th ed. Assoc. Off. Anal. Chem. Int., Gathersburg, MD.Google Scholar
  3. Awad A. B.; Chinnam M.; Fink C. S.; Bradford P. G. β-sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine. 14: 747–754; 2007.PubMedCrossRefGoogle Scholar
  4. Bajer T.; Adam M.; Galla L.; Ventura K. Comparison of various extraction techniques for isolation and determination of isoflavonoids in plants. J. Sep. Sci. 30: 122–127; 2007.PubMedCrossRefGoogle Scholar
  5. Bauer M. L.; Schimek D. E.; Reed J. J.; Caton J. S.; Berg P. T.; Lardy G. P. Influence of pressed beet pulp and concentrated separator by-product on intake, gain, efficiency of gain, and carcass composition of growing and finishing beef steers. J. Anim. Sci. 85:2290–2297; 2007.Google Scholar
  6. Biehl M. L.; Prelusky D. B.; Koritz G. D.; Hartin K. E.; Buck W. B.; Trenholm H. L. Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicol. Appl. Pharmacol. 121: 152–159; 1993.PubMedCrossRefGoogle Scholar
  7. Bosch U.; Mirocha C. J. Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers. Appl. Environ. Microbiol. 58: 3233–3239; 1992.PubMedGoogle Scholar
  8. Buffum, B.C. and C.J. Griffith. 1902. Part I: The feeding value of beet pulp. Part II: Feeding beet pulp and sugar beets to cows. Tech. Bull. No. 73. Colorado Agriculture College, Agricultural Experiment Station.Google Scholar
  9. Bugbee W. M. Storage Rot of sugar beet. Plant Disease. 66: 871–873; 1982.CrossRefGoogle Scholar
  10. Burlakoti R. R.; Ali S.; Secor G. A.; Neate S. M.; McMullen M. P.; Adhikari T. B. Comparative mycotoxin profiles of Gibberella zeae populations from barley, wheat, potatoes, and sugar beets. Appl. Environ. Microbiol. 74: 6513–6520; 2008.PubMedCrossRefGoogle Scholar
  11. Chai J. W.; Kuppusamy U. R.; Kanthimathi M. S. β-sitosterol induces apoptosis in MCF-7 cells. J. Biochem. Mol. Biol. 16(2): 28–30; 2008. Malaysia.Google Scholar
  12. Cherdshewasart W.; Sriwatcharakul S. Metabolic activation promotes estrognic activity of the phytoestrogen-rich plant. Maturitas. 59: 128–135; 2008.PubMedCrossRefGoogle Scholar
  13. Danicke S.; Matthaus K.; Lebzien P.; Valenta H.; Stemme K.; Ueberschar K. H.; Razzazi-Fazeli E.; Bohm J.; Flachowsky G. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. J. Anim. Physiol. Anim. Nutr. 89: 303–315; 2005.CrossRefGoogle Scholar
  14. Diekman M. A.; Green M. L. Mycotoxins and reproduction in domestic livestock. J. Anim. Sci. 70: 1615–1627; 1992.PubMedGoogle Scholar
  15. Dukes’ physiology of domestic animals. 2004. 12th ed. Cornell University, Ithaca, New York.Google Scholar
  16. Elghamry M. I.; Grunert E.; Aehnelt E. An active principle responsible for estrogenicity in the leaves of Beta vulgaris. Planta Medica. 19: 208–214; 1971.PubMedCrossRefGoogle Scholar
  17. Extension.org. 2008. Can I feed sugar beet pulp to beef cattle? Accessed June 22, 2011. http://www.extension.org/pages/39515/can-i-feed-sugar-beet-pulp-to-beef-cattle.
  18. Fitzpatrick D. W.; Picken C. A.; Murphy L. C.; Buhr M. M. Measurement of the relative binding affinity of zearalenone, α-zearalenol, and β-zearalenol for uterine and oviduct estrogen receptors in swine, rats, and chickens: An indicator of estrogenic potencies. Comp. Biochem. Physiol. 94C: 691–694; 1989.Google Scholar
  19. Gadd J. B.; Tremblay L. A.; Northcott G. L. Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents. Environ. Pollut. 158: 730–736; 2010.PubMedCrossRefGoogle Scholar
  20. Groves F.; Zhang L.; Chang Y. S.; Ross P. F.; Casper H.; Norred W. P.; You W. C.; Faumeni J. F. Fusarium mycotoxins in corn and corn products in a high-risk area for gastric cancer in Shandong province, China. J. Assoc. Off. Anal. Chem. Int. 82(3): 657–662; 1999.Google Scholar
  21. Grunert E.; Elghamry M. I.; Aehnelt E. Estimation of estrogenic and toxic potencies of sugar beet’s plant (Beta vulguaris) and silage in mice. Planta Med. 17: 71–78; 1969.PubMedCrossRefGoogle Scholar
  22. Gutendorf B.; Westendorf J. Comparison of an array of in vitro assays for assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology. 166: 79–89; 2001.PubMedCrossRefGoogle Scholar
  23. Hagler W. M.; Mirocha C. J.; Pathre S. V.; Behrens J. C. Identification of the naturally occurring isomer of zearalenol produced by Fusarium roseum ‘Gibbosum’ in rice culture. Appl. Environ. Microbiol. 37: 849–853; 1979.PubMedGoogle Scholar
  24. Hagstrom, D. J. 2008. Beet pulp as a fiber source for horses. University of Illinois Extension Service. Pg:1-3.Google Scholar
  25. Hartnell G. F.; Hvelplund T.; Weisbjerg M. R. Nutrient digestibility in sheep fed diets containing Roundup Ready or conventional fodder beet, sugar beet, and beet pulp. J. Anim. Sci. 83: 400–407; 2005.PubMedGoogle Scholar
  26. KYPRIANOU, Markos. 2006. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Official Journal of the European Union. 2006/567/EC L229: 7-9.Google Scholar
  27. Jiang, S.Z. Z.B. Yang, W.R. Yang, S.L. Johnston, and F. Chi. 2012. Effects of purified zearalenone on serum reproductive hormone, immunoglobulin, antibody titer and spleen pro-inflammatory cytokines mRNA in young gilts. J. Anim. Sci.Google Scholar
  28. FAO, 2004. Worldwide regulations for mycotoxins in food and feed in 2003. FAO Food and Nutrition paper No. 81. Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  29. Ju Y. H.; Clausen L. M.; Allred K. F.; Almada A. L.; Helferich W. G. β-sitosterol, β-sitosterol glucosideand, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J. Nutr. 134: 1145–1151; 2004.PubMedGoogle Scholar
  30. Kennedy D. G.; Hewitt S. A.; McEvoy J. D.; Currie J. W.; Cannavan A.; Blanchflower W. J.; Elliot C. T. Zeranol is formed from Fusarium spp. toxins in cattle in vivo. Food Addit. Contam. 15: 393–400; 1998.Google Scholar
  31. Kleinova M.; Zollner P.; Kahlbacher H.; Hochsteiner W.; Lindner W. Metabolic profiles of the mycotoxin zearalenone and of the growth promoter zeranol in urine, liver, and muscle of heifers. J. Agric. Food Chem. 50: 4769–4776; 2002.PubMedCrossRefGoogle Scholar
  32. Lardy, G. 2006. Sugar beets can make good silage. Forage and Grazinglands. Accessed June 16, 2011. http://www.plantmanagementnetwork.org/pub/fg/news/2006/SugarBeets/.
  33. Lardy, G., and R. Schafer. 2008. Feeding sugar beet byproducts to cattle. North Dakota State University Extension Service. Accessed July 28, 2011. http://www.ag.ndsu.edu/pubs/ansci/livestoc/as1365.html.
  34. Macri A.; Schollenberger M.; Drochner W.; Tafaj M.; Morar M. V. Investigation on the in vitro degradation of zearalenone in rumen fluid. Mycotoxin Res. 21: 65–67; 2005.CrossRefGoogle Scholar
  35. Mallis L. M.; Sarkahian A. B.; Harris H. A.; Zhang M. Y.; McConnell O. J. Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry. J. Chromatogr. B. 796: 71–86; 2003.CrossRefGoogle Scholar
  36. Matsumura A.; Ghosh A.; Pope G. S.; Darbre P. D. Comparative study of oestrogenic properties of eight phytoestrogens in MCF-7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 94: 431–443; 2008.CrossRefGoogle Scholar
  37. Mayr U.; Butsch A.; Schneider S. Validation of two in vitro test systems for estrogenic activities with zearalenone, phytoestrogens, and cereal extracts. Toxicology. 74: 135–149; 1992.PubMedCrossRefGoogle Scholar
  38. Mellanen P.; Petänen T.; Lehtimäki J.; Mäkelä S.; Bylund G.; Holmbom B.; Mannila E.; Oikari A.; Santti R. Wood-derived estrogens: Studies in vitro with breast cancer cell lines and in vivo in trout. Toxicol. Appl. Pharmacol. 136: 381–388; 1996.PubMedCrossRefGoogle Scholar
  39. Miles C. O.; Erasmuson A. F.; Wilkins A. L.; Towers N. R.; Smith B. L.; Garthwaite I.; Scahill B. G.; Hansen R. P. Ovine metabolism of zearalenone to α-zearalanol (Zeranol). J. Agric. Food Chem. 44: 3244–3250; 1996.CrossRefGoogle Scholar
  40. Mirocha C. J.; Harrison J.; Nichols A. A.; McClintock M. Detection of a fungal estrogen (F-2) in hay associated with infertility in dairy cattle. Appl. Microbiol. 16: 797–798; 1968.PubMedGoogle Scholar
  41. Morito K.; Hirose T.; Kinjo J.; Hirakawa T.; Okawa M.; Nohara T.; Ogawa S.; Inoue S.; Muramatsu M.; Masamune Y. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bul. 24(4): 351–356; 2001.CrossRefGoogle Scholar
  42. Morton G. E. The utilization of beet sugar by-products for the feeding of live stock. J. Anim. Sci. 1915: 65–68; 1915.Google Scholar
  43. Murphy P. A.; Song T.; Buseman G.; Barua K.; Beecher G. R.; Trainer D.; Holden J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 47: 2697–2704; 1999.PubMedCrossRefGoogle Scholar
  44. Peterson G.; Barnes S. Genistein inhibition of the growth of human breast cancer cells: Independence from estrogen receptors and the multi-drug resistance gene. Biochem. Biophys. Res. Commun. 179: 661–667; 1991.PubMedCrossRefGoogle Scholar
  45. Rassmussen T. H.; Nielsen J. B. Critical parameters in the MCF-7 cell proliferation bioassay (E-screen). Biomarkers. 7: 322–336; 2002.CrossRefGoogle Scholar
  46. Rigelnik L. Study of fertility in cattle herds on 15 intensive sugar beet farms. DVM Diss, Hannover, Germany; 1968.Google Scholar
  47. Rodrigues I.; Naehrer K. Biomin survey 2010: Mycotoxins inseparable from animal commodities and feed. All About Feed. 2: 17–20; 2011.Google Scholar
  48. Shappell N. W. Ergovaline toxicity on CaCo-2 cells as assessed by MTT, alamarblue, and DNA assays. In Vitro Cell Dev. Biol. 39: 329–335; 2003.CrossRefGoogle Scholar
  49. Shappell N. W. Estrogenic activity in the environment: Municipal wastewater effluent, river, ponds, and wetlands. J. Environ. Qual. 35: 122–132; 2006.PubMedCrossRefGoogle Scholar
  50. Shappell N. W.; Elder K. H.; West M. Estrogenicity and nutrient concentration of surface waters surrounding a large confinement dairy operation using best manag4ement practices for land application of animal wastes. Environ. Sci. Technol. 44: 2365–2371; 2010.PubMedCrossRefGoogle Scholar
  51. Smith J. F.; di Menna M. E.; McGowan L. T. Reproductive performance of Coopworth ewes following oral doses of zearalenone before and after mating. J. Reprod. Fert. 89: 99–106; 1990.CrossRefGoogle Scholar
  52. Soto A. M.; Sonnenschein C.; Chung K. L.; Fernandez M. F.; Olea N.; Serrano F. O. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ. Health Perspect. 103(Suppl 7): 113–122; 1995.PubMedCrossRefGoogle Scholar
  53. Van der Peet-Schwering C. M. C.; Kemp B.; Plagge J. G.; Vereijken P. F. G.; den Hartog L. A.; Spoolder H. A. M.; Verstegen M. W. A. Performance and individual feed intake characteristics of group-housed sows fed a nonstarch polysaccharides diet ad libitum during gestation over three parities. J. Anim. Sci. 82: 1246–1257; 2004.PubMedGoogle Scholar
  54. Voelker J. A.; Allen M. S. Pelleted beet pulp substituted for high-moisture corn: 1. Effects on feeding intake, chewing behavior, and milk production of lactating dairy cows. Am. Dairy Sci. Assoc. 86: 3542–3552; 2003.CrossRefGoogle Scholar
  55. Welshons W. V.; Rottinghaus G. E.; Nonneman D. J.; Dolan-Timpe M.; Ross P. F. A sensitive bioassay for detection of dietary estrogens in animal feeds. J. Vet. Diagn. Invest. 2: 268–273; 1990.PubMedCrossRefGoogle Scholar
  56. Zhang E. J.; Ng K. M.; Luo K. Q. Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. J. Agric. Food Chem. 55: 6940–6950; 2007.PubMedCrossRefGoogle Scholar
  57. Worldwide regulations for mycotoxins in food and feed in 2003. 2004. Food and Agricultural Organization. Agriculture and Consumer Protection, United Nations. FAO Corp. Document . ISBN 9251051623, ISSN 0254-4725. Repository. http://www.fao.org/docrep/007/y5499e/y5499e07.htm Accessed 12/23/11.

Copyright information

© The Society for In Vitro Biology 2012

Authors and Affiliations

  • N. W. Shappell
    • 1
  • M. S. Mostrom
    • 2
  • E. M. Lenneman
    • 1
    • 3
  1. 1.USDA, Agricultural Research ServiceRed River Valley Agricultural Research Center, Biosciences Research LaboratoryFargoUSA
  2. 2.Veterinary Diagnostic Services DepartmentNorth Dakota State UniversityFargoUSA
  3. 3.Formerly of North Dakota State UniversityFargoUSA

Personalised recommendations