Quantitative and semiquantitative immunoassay of growth factors and cytokines in the conditioned medium of STO and CF-1 mouse feeder cells

  • Neil C. Talbot
  • Wendy O. Sparks
  • Anne M. Powell
  • Stanislaw Kahl
  • Thomas J. Caperna


Feeder cells of irradiated mouse fibroblasts are commonly used for, and are generally necessary for, the in vitro maintenance and growth of many fastidious cell types, particularly embryonic stem cells or induced pluripotent stem cells. Quantitative and semiquantitative immunoassays of conditioned media were performed to identify some of the soluble cytokines, chemokines, protein hormones, and cell matrix/adhesion molecules that are elaborated from two commonly used feeder cells, STO and CF-1. Among those quantitatively assayed, the most abundant cytokine proteins expressed by the feeder cells were activin A, hepatocyte growth factor (HGF), insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding protein (IGFBP)-6, macrophage colony-stimulating factor (a.k.a. CSF-1), and pigment epithelium-derived factor (a.k.a. serine protease inhibitor, clade F, member 1). CF-1 cells expressed ten times more activin A than STO cells and also produced larger amounts of interleukin-6 and IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5. Conversely, STO cell produced almost ten times more HGF and five times more stem cell factor (a.k.a. c-kit ligand) than CF-1 cells. Assayed semiquantitatively, relatively large amounts of chemokines were produced by both feeder cells including fractalkine (CX3CL1), interferon-inducible protein 10 (a.k.a. CXCL10 and cytokine-responsive gene-2, CRG-2), monocyte chemotactic protein (MCP)-1 (a.k.a. CCL2 and junctional epithelium chemokine (JE), MCP-5/CCL12), keratinocyte-derived chemokine (a.k.a. CXCL1 and growth-related oncogene alpha, GROα), nephroblastoma overexpressed gene (CCN3, IGFBP-9), stromal cell-derived factor 1 (CXCL12), and serpin E1 (PAI-1). In contrast to one another, STO produced more CXCL16 than CF-1 cells, and CF-1 cell produced more MCP-5 (CCL12), macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), pentraxin-3 (TSG-14), and platelet factor-4 (CXCL4) than STO cells. Soluble adhesion molecule, sICAM (ICAM-1, CD54), was expressed by CF-1 cells, but not STO cells, and similarly, the cell matrix-associated molecules endocan (endothelial cell-specific molecule 1), endostatin (collagen XVIII), and matrix metalloproteinase 3 were expressed more by CF-1 cells. Tissue inhibitor of metalloproteinases 1 was robustly expressed by both feeder cells. Other proteins primarily detected from CF-1 cells included retinol-binding protein 4 and FGF21, while STO cells secreted more interferon gamma. Both feeder cells produced no or low amounts of LIF, tumor necrosis factor alpha, vascular endothelial growth factor (VEGF), VEGF-B, prolactin, various interleukins, fibroblast growth factor (FGF)-1, FGF-2, FGF-7, EGF, HB-EGF, and amphiregulin. The results may explain some of the cell growth and maintenance responses by various types of cells co-cultured on STO or CF-1 feeder cells.


Cell culture CF-1 Chemokine Cytokine Feeder cells Mouse STO 


  1. Aden D. P.; Fogel A.; Plotkin S.; Damjanov I.; Knowles B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282: 615–616; 1979.PubMedCrossRefGoogle Scholar
  2. Alberio R.; Croxall N.; Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19: 1627–1636; 2010.PubMedCrossRefGoogle Scholar
  3. Barreca A.; De Luca M.; Del Monte P.; Bondanza S.; Damonte G.; Cariola G.; Di Marco E.; Giordano G.; Cancedda R.; Minuto F. In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J. Cell. Physiol. 151: 262–268; 1992.PubMedCrossRefGoogle Scholar
  4. Beattie G. M.; Lopez A. D.; Bucay N.; Hinton A.; Firpo M. T.; King C. C.; Hayek A. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23: 489–495; 2005.PubMedCrossRefGoogle Scholar
  5. Brooks F. A.; Gardner R. L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. U S A 94: 5709–5712; 1997.CrossRefGoogle Scholar
  6. Brons I. G.; Smithers L. E.; Trotter M. W.; Rugg-Gunn P.; Sun B.; de Sousa C.; Lopes S. M.; Howlett S. K.; Clarkson A.; Ahrlund-Richter L.; Pedersen R. A.; Vallier L. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448: 191–195; 2007.PubMedCrossRefGoogle Scholar
  7. Buhr N.; Carapito C.; Schaeffer C.; Hovasse A.; Van Dorsselaer A.; Viville S. Proteome analysis of the culture environment supporting undifferentiated mouse embryonic stem and germ cell growth. Electrophoresis 28: 1615–1623; 2007.PubMedCrossRefGoogle Scholar
  8. Cao L.; Gibson J. D.; Miyamoto S.; Sail V.; Verma R.; Rosenberg D. W.; Nelson C. E.; Giardina C. Intestinal lineage commitment of embryonic stem cells. Differentiation 81: 1–10; 2011.PubMedCrossRefGoogle Scholar
  9. Caperna T. J.; Blomberg L. A.; Garrett W. M.; Talbot N. C. Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media. In Vitro Cell. Dev. Biol. Anim. 47: 218–233; 2011.PubMedCrossRefGoogle Scholar
  10. Chen G.; Gharib T. G.; Huang C. C.; Taylor J. M.; Misek D. E.; Kardia S. L.; Giordano T. J.; Iannettoni M. D.; Orringer M. B.; Hanash S. M.; Beer D. G. Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell. Proteomics 1: 304–313; 2002.PubMedCrossRefGoogle Scholar
  11. Chin A. C.; Fong W. J.; Goh L. T.; Philp R.; Oh S. K.; Choo A. B. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J. Biotechnol. 130: 320–328; 2007.PubMedCrossRefGoogle Scholar
  12. Cui Y.; Madeddu P. The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing. Curr. Pharm. Des. Sept 15; 2011 (in press).Google Scholar
  13. D’Amour K. A.; Agulnick A. D.; Eliazer S.; Kelly O. G.; Kroon E.; Baetge E. E. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23: 1534–1541; 2005.PubMedCrossRefGoogle Scholar
  14. Eiselleova L.; Peterkova I.; Neradil J.; Slaninova I.; Hampl A.; Dvorak P. Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52: 353–363; 2008.PubMedCrossRefGoogle Scholar
  15. Evans M. J.; Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156; 1981.PubMedCrossRefGoogle Scholar
  16. Freshney R. I. Culture of animal cells. 3rd ed. Wiley-Liss, New York; 1994.Google Scholar
  17. Gallardo T. D.; Hammer R. E.; Garry D. J. RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis 37: 57–63; 2003.PubMedCrossRefGoogle Scholar
  18. Greber B.; Lehrach H.; Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25: 455–464; 2007.PubMedCrossRefGoogle Scholar
  19. Gry M.; Rimini R.; Strömberg S.; Asplund A.; Pontén F.; Uhlén M.; Nilsson P. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10: 365; 2009.PubMedCrossRefGoogle Scholar
  20. Hilton D. J.; Nicola N. A.; Metcalf D. Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Anal. Biochem. 173: 359–367; 1988.PubMedCrossRefGoogle Scholar
  21. Ishii T.; Fukumitsu K.; Yasuchika K.; Adachi K.; Kawase E.; Suemori H.; Nakatsuji N.; Ikai I.; Uemoto S. Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G313–321; 2008.PubMedCrossRefGoogle Scholar
  22. Ji L.; Liu Y. X.; Yang C.; Yue W.; Shi S. S.; Bai C. X.; Xi J. F.; Nan X.; Pei X. T. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha. J. Cell. Physiol. 221: 54–66; 2009.PubMedCrossRefGoogle Scholar
  23. Kawase E.; Suemori H.; Takahashi N.; Okazaki K.; Hashimoto K.; Nakatsuji N. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38: 385–390; 1994.PubMedGoogle Scholar
  24. Lee K. H.; Chuang C. K.; Guo S. F.; Tu C. F. Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev. Jun 10; 2011 (in press).Google Scholar
  25. Li M.; Chang C. J.; Lathia J. D.; Wang L.; Pacenta H. L.; Cotleur A.; Ransohoff R. M. Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells. Glia 59: 108–118; 2011.PubMedCrossRefGoogle Scholar
  26. Lim J. W.; Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187–1203; 2002.PubMedCrossRefGoogle Scholar
  27. Liu Z.; Stanojevic V.; Avadhani S.; Yano T.; Habener J. F. Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia 54: 2067–2076; 2011.PubMedCrossRefGoogle Scholar
  28. Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U S A 78: 7634–7638; 1981.PubMedCrossRefGoogle Scholar
  29. Matsui Y.; Zsebo K.; Hogan B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847; 1992.PubMedCrossRefGoogle Scholar
  30. McNiece I. K.; Briddell R. A. Stem cell factor. J. Leukoc. Biol. 58: 14–22; 1995.PubMedGoogle Scholar
  31. Montesano R.; Matsumoto K.; Nakamura T.; Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901–908; 1991.PubMedCrossRefGoogle Scholar
  32. Montesano R.; Soriano J. V.; Malinda K. M.; Ponce M. L.; Bafico A.; Kleinman H. K.; Bottaro D. P.; Aaronson S. A. Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ. 9: 355–365; 1998.PubMedGoogle Scholar
  33. Okamoto S.; Takahashi M. Induction of retinal pigment epithelial cells from monkey iPS cells. Invest. Ophthalmol. Vis. Sci. 52: 8785–8790; 2011.Google Scholar
  34. Oostendorp R. A.; Robin C.; Steinhoff C.; Marz S.; Bräuer R.; Nuber U. A.; Dzierzak E. A.; Peschel C. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells 23: 842–851; 2005.PubMedCrossRefGoogle Scholar
  35. Park J. H.; Kim S. J.; Oh E. J.; Moon S. Y.; Roh S. I.; Kim C. G.; Yoon H. S. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol. Reprod. 69: 2007–2014; 2003.PubMedCrossRefGoogle Scholar
  36. Peters S. J.; Vanhaecke T.; Papeleu P.; Rogiers V.; Haagsman H. P.; van Norren K. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response. Cell Tissue Res. 340: 451–457; 2010.PubMedCrossRefGoogle Scholar
  37. Piquet-Pellorce C.; Grey L.; Mereau A.; Heath J. K. Are LIF and related cytokines functionally equivalent? Exp. Cell Res. 213: 340–347; 1994.PubMedCrossRefGoogle Scholar
  38. Prowse A. B.; McQuade L. R.; Bryant K. J.; Marcal H.; Gray P. P. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J. Proteome Res. 6: 3796–3807; 2007.PubMedCrossRefGoogle Scholar
  39. Qi X.; Li T. G.; Hao J.; Hu J.; Wang J.; Simmons H.; Miura S.; Mishina Y.; Zhao G. Q. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci. U S A 101: 6027–6032; 2004.PubMedCrossRefGoogle Scholar
  40. Rathjen P. D.; Toth S.; Willis A.; Heath J. K.; Smith A. G. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62: 1105–1114; 1990.PubMedCrossRefGoogle Scholar
  41. Rogler L. E. Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am. J. Pathol. 150: 591–602; 1997.PubMedGoogle Scholar
  42. Schmitt R. M.; Bruyns E.; Snodgrass H. R. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5: 728–740; 1991.PubMedCrossRefGoogle Scholar
  43. Shamblott M. J.; Axelman J.; Wang S.; Bugg E. M.; Littlefield J. W.; Donovan P. J.; Blumenthal P. D.; Huggins G. R.; Gearhart J. D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U S A 95: 13726–13731; 1998.PubMedCrossRefGoogle Scholar
  44. Shamblott M. J.; Kerr C. L.; Axelman J.; Littlefield J. W.; Clark G. O.; Patterson E. S.; Addis R. C.; Kraszewski J. N.; Ketn K. C.; Gearhart J. D. Derivation and differentiation of human embryonic germ cells. In: Lanza R.; Gearhart J.; Hogan B.; Melton D.; Pederson R.; Thomson J.; West M. (eds) Handbook of stem cells, vol. 1. Elsevier Academic, Burlington, pp 459–470; 2004.CrossRefGoogle Scholar
  45. Smith A. G.; Heath J. K.; Donaldson D. D.; Wong G. G.; Moreau J.; Stahl M.; Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688–690; 1988.PubMedCrossRefGoogle Scholar
  46. Smith T. A.; Hooper M. L. Medium conditioned by feeder cells inhibits the differentiation of embryonal carcinoma cultures. Exp. Cell Res. 145: 458–462; 1983.PubMedCrossRefGoogle Scholar
  47. Suemori H.; Nakatsuji N. Establishment of the embryo-derived stem (ES) cell lines from mouse blastocysts: effects of the feeder cell layer. Dev. Growth Differ. 29: 133–139; 1987.CrossRefGoogle Scholar
  48. Sulzbacher S.; Schroeder I. S.; Truong T. T.; Wobus A. M. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors—the influence of differentiation factors and culture conditions. Stem Cell Rev. 5: 159–173; 2009.PubMedCrossRefGoogle Scholar
  49. Talbot N. C.; Blomberg L. A. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4: 235–254; 2008.PubMedCrossRefGoogle Scholar
  50. Talbot N. C.; Caperna T. J.; Lebow L. T.; Moscioni D.; Pursel V. G.; Rexroad Jr. C. E. Ultrastructure, enzymatic, and transport properties of the PICM-19 bipotent liver cell line. Exp. Cell Res. 225: 22–34; 1996.PubMedCrossRefGoogle Scholar
  51. Talbot N. C.; Paape M. J. Continuous culture of pig tissue-derived macrophages. Methods Cell Sci. 18: 315–327; 1996.CrossRefGoogle Scholar
  52. Talbot N. C.; Paape M.; Worku M. Selective expansion and continuous culture of macrophages from adult pig blood. Vet. Immunol. Immunopathol. 64: 173–190; 1998.PubMedCrossRefGoogle Scholar
  53. Talbot N. C.; Pursel V. G.; Rexroad Jr. C. E.; Caperna T. J.; Powell A. M.; Stone R. T. Colony isolation and secondary culture of fetal porcine hepatocytes on STO feeder cells. In Vitro Cell. Dev. Biol. Anim. 30A: 851–858; 1994a.PubMedCrossRefGoogle Scholar
  54. Talbot N. C.; Rexroad Jr. C. E.; Powell A. M.; Pursel V. G.; Caperna T. J.; Ogg S. L.; Nel N. D. A continuous culture of pluripotent fetal hepatocytes derived from the 8-day epiblast of the pig. In Vitro Cell. Dev. Biol. Anim. 30A: 843–850; 1994b.PubMedCrossRefGoogle Scholar
  55. Tesar P. J.; Chenoweth J. G.; Brook F. A.; Davies T. J.; Evans E. P.; Mack D. L.; Gardner R. L.; McKay R. D. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448: 196–199; 2007.PubMedCrossRefGoogle Scholar
  56. Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.PubMedCrossRefGoogle Scholar
  57. Van Lint P.; Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J. Leukoc. Biol. 82: 1375–1381; 2007.PubMedCrossRefGoogle Scholar
  58. Wang L.; Schulz T. C.; Sherrer E. S.; Dauphin D. S.; Shin S.; Nelson A. M.; Ware C. B.; Zhan M.; Song C. Z.; Chen X.; Brimble S. N.; McLean A.; Galeano M. J.; Uhl E. W.; D’Amour K. A.; Chesnut J. D.; Rao M. S.; Blau C. A.; Robins A. J. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110: 4111–4119; 2007.PubMedCrossRefGoogle Scholar
  59. Willems E.; Leyns L. Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires fibroblast growth factor activity. Differentiation 76: 745–759; 2008.PubMedCrossRefGoogle Scholar
  60. Wobus A. M.; Holzhausen H.; Jäkel P.; Schöneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 152: 212–219; 1984.PubMedCrossRefGoogle Scholar
  61. Xiao L.; Yuan X.; Sharkis S. J. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24: 1476–1486; 2006.PubMedCrossRefGoogle Scholar
  62. Xu R. H.; Peck R. M.; Li D. S.; Feng X.; Ludwig T.; Thomson J. A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2: 185–190; 2005.PubMedCrossRefGoogle Scholar
  63. Yoshida K.; Chambers I.; Nichols J.; Smith A.; Saito M.; Yasukawa K.; Shoyab M.; Taga T.; Kishimoto T. Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech. Dev. 45: 163–171; 1994.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2011

Authors and Affiliations

  • Neil C. Talbot
    • 1
    • 3
  • Wendy O. Sparks
    • 1
  • Anne M. Powell
    • 1
  • Stanislaw Kahl
    • 2
  • Thomas J. Caperna
    • 1
  1. 1.USDA, ARS, Animal and Natural Resources InstituteAnimal Biosciences and Biotechnology LaboratoryBeltsvilleUSA
  2. 2.Bovine Functional Genomics LaboratoryBeltsville Agricultural Research CenterBeltsvilleUSA
  3. 3.U.S. Department of Agriculture, Agricultural Research Service, USDA, ARS, ANRI, BGLBeltsvilleUSA

Personalised recommendations