Advertisement

Effects of gender-specific adult bovine serum on myogenic satellite cell proliferation, differentiation and lipid accumulation

  • Dong-Mok Lee
  • Prati Bajracharya
  • Eun Ju Lee
  • Ji-Eun Kim
  • Hyung-Jeong Lee
  • Taehoon Chun
  • Jiehoe Kim
  • Kyung Hyun Cho
  • Jongsoo Chang
  • SeongKoo Hong
  • Inho ChoiEmail author
Report

Abstract

The study was performed to explore the effects of adult bovine male serum (MS), female serum (FS), and castrated male serum (C-MS) on myogenic satellite cells (MSCs) proliferation and differentiation into myotubes or into adipocyte-like cells (ALCs). MSC proliferation and differentiation was highest in the medium supplemented with MS, implying the important role of male steroid hormones. Myogenin and desmin were highly upregulated in cells cultured in MS-supplemented medium. In contrast, lipid accumulation in ALCs was highest in the medium supplemented with FS. Fatty acid transporter (FAT/CD36) was upregulated in FS-supplemented cultures. Detection of higher FAT/CD36 inducing fatty acids (arachidic acid and eicosapentaenoic acid) in FS compared with MS and C-MS suggests that these fatty acids may have influenced the enhanced formation of lipid droplets in ALCs. Effect of sex steroids on cell proliferation and cell growth of bovine MSCs and C2C12 cell in C-MS was greater than charcoal–dextran-treated fetal bovine serum (CDFBS). Concluding the above facts, the results indicate that each gender-specific bovine serum constitutes of different component, which leads to unique effects on cell behavior.

Keywords

Myogenic satellite cells Differentiation Transdifferentiation FAT/CD36 Serum 

Notes

Acknowledgments

The authors wish to thank Dr. Abdul R. Bhat and Smritee Pokharel for critical reviewing of the manuscript. The gender-specific adult bovine sera were used from Bovine Genome Resources Bank, Yeungnam University, Korea.

Support

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by Korea government (MEST) (2009–0060480).

References

  1. Asakura A.; Komaki M.; Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68: 245–253; 2001.PubMedCrossRefGoogle Scholar
  2. Campbell S. E.; Tandon N. N.; Woldegiorgis G.; Luiken J. J.; Glatz J. F.; Bonen A. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. J. Biol. Chem. 279: 36235–36241; 2004.PubMedCrossRefGoogle Scholar
  3. Cao Z.; West C.; Norton-Wenzel C. S.; Rej R.; Davis F. B.; Davis P. J.; Rej R. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr. Res. 34: 101–108; 2009.PubMedCrossRefGoogle Scholar
  4. Chen J. C.; Goldhamer D. J. Skeletal muscle stem cells. Reprod. Biol. Endocrinol. 13: 101; 2003.CrossRefGoogle Scholar
  5. Choi I.; Gudas L. J.; Katzenellenbogen B. S. Regulation of keratin 19 gene expression by estrogen in human breast cancer cells and identification of the estrogen responsive gene region. Mol. Cell. Endocrinol. 164: 225–237; 2000.PubMedCrossRefGoogle Scholar
  6. Doumit M. E.; Cook D. R.; Merkel R. A. Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 137: 1385–3597; 1996.PubMedCrossRefGoogle Scholar
  7. Fux C.; Mitta B.; Kramer B. P.; Fussenegger M. Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res. 2: 32; 2004.Google Scholar
  8. Kamanga-Sollo E.; Pampusch M. S.; Xi G.; White M. E.; Hathaway M. R.; Dayton W. R. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. J. Cell. Physiol. 201: 181–189; 2004.PubMedCrossRefGoogle Scholar
  9. Katzenellenbogen B. S.; Choi I.; Delage-Mourroux R.; Edigar T. R.; Martini P. G.; Montano M.; Sun J.; Weis K.; Katzenellenbogen J. A. Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J. Steroid Biochem. Mol. Biol. 74: 279–285; 2000.PubMedCrossRefGoogle Scholar
  10. Kim J.; Kim M.; Nahm S. S.; Lee D M.; Pokharel S.; Choi I. Characterization of gender-specific bovine serum. Animal Cells and Systems. 2011 (in press).Google Scholar
  11. Kook S. H.; Choi K. C.; Son Y. O.; Lee K. Y.; Hwang I. H.; Lee H. J.; Chang J. S.; Choi I. H.; Lee J. C. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells 22: 239–245; 2006.PubMedGoogle Scholar
  12. Lee D. K. Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 294: 408–413; 2002.PubMedCrossRefGoogle Scholar
  13. Lee D. M.; Choi M. S.; Woo G. I.; Shin Y. M.; Lee K. H.; Cheon Y.; Chun T.; Choi I. Effect of gender-specific bovine serum supplemented medium on cell culture. J. Anim. Sci. Tech. 51: 413–420; 2009.CrossRefGoogle Scholar
  14. Lee E. J.; Choi J.; Hyun J. H.; Cho K. H.; Hwang I. H.; Lee H. J.; Chang J. S.; Choi I. Steroid effects on cell proliferation, differentiation and steroid receptor gene expression in adult bovine muscle satellite cells. Asian. Aust. J. Anim. Sci. 20: 501–510; 2007.Google Scholar
  15. Martin C. M.; Russell J. L.; Ferdous A.; Garry D. J. Molecular signatures define myogenic stem cell populations. Stem Cell Rev. 2: 37–42; 2006.PubMedCrossRefGoogle Scholar
  16. Morrison W. R.; Smith L. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600–608; 1964.PubMedGoogle Scholar
  17. Pilili J. P.; González N. V.; Molinari G.; Reigosa M. A.; Soloneski S.; Larramendy M. L. Testing genotoxicity and cytotoxicity strategies for the evaluation of commercial radiosterilized fetal calf sera. Biologicals 38: 135–143; 2010.PubMedCrossRefGoogle Scholar
  18. Singh N. K.; Chae H. S.; Hwang I. H.; Yoo Y. M.; Ahn C. N.; Lee S. H.; Lee H. J.; Park H. J.; Chung H. Y. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85: 1126–1135; 2007.PubMedCrossRefGoogle Scholar
  19. Singh R.; Artaza J. N.; Taylor W. E.; Gonzales-Cadavid N. F.; Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144: 5081–5088; 2003.PubMedCrossRefGoogle Scholar
  20. Sinha-Hikim I.; Roth S. M.; Lee M. I.; Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am. J. Physiol. Endocrinol. Metab. 285: E197–E205; 2003.PubMedGoogle Scholar
  21. Tontonoz P.; Nagy L.; Alvarez J. G.; Thomazy V. A.; Evans R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241–252; 1998.PubMedCrossRefGoogle Scholar
  22. Vallve J. C.; Uliaque K.; Girona J.; Cabre A.; Ribalta J.; Heras M.; Masana L. Unsaturated fatty acids and their oxidation products stimulate CD36 gene expression in human macrophages. Atherosclerosis 164: 54–56; 2002.CrossRefGoogle Scholar
  23. Zhou J.; Febbraio M.; Zhai Y.; Kuruba R.; Wada T.; Khadem S.; Ren S.; Li S.; Silverstein R. L.; Xie W. LXR, PXR, and PPARγ cooperate in regulating fatty acid transporter CD36 and promoting hepatic lipogenesis. Gastroenterology 134: 556–567; 2008.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2011

Authors and Affiliations

  • Dong-Mok Lee
    • 2
  • Prati Bajracharya
    • 1
  • Eun Ju Lee
    • 2
  • Ji-Eun Kim
    • 2
  • Hyung-Jeong Lee
    • 3
  • Taehoon Chun
    • 4
  • Jiehoe Kim
    • 2
  • Kyung Hyun Cho
    • 2
  • Jongsoo Chang
    • 5
  • SeongKoo Hong
    • 3
  • Inho Choi
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyYeungnam UniversityGyeongsanSouth Korea
  2. 2.School of BiotechnologyYeungnam UniversityGyeongsanSouth Korea
  3. 3.National Livestock Research InstituteSuwonSouth Korea
  4. 4.School of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
  5. 5.Department of Agricultural ScienceKorea National Open UniversitySeoulSouth Korea

Personalised recommendations