In Vitro Cellular & Developmental Biology - Animal

, Volume 47, Issue 2, pp 125–131

The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro

  • Sarah J. Watkins
  • Gillian M. Borthwick
  • Helen M. Arthur
Article

Abstract

Cardiac hypertrophy is a major risk factor for heart failure and associated patient morbidity and mortality. Research investigating the aberrant molecular processes that occur during cardiac hypertrophy uses primary cardiomyocytes from neonatal rat hearts as the standard experimental in vitro system. In addition, some studies make use of the H9C2 rat cardiomyoblast cell line, which has the advantage of being an animal-free alternative; however, the extent to which H9C2 cells can accurately mimic the hypertrophic responses of primary cardiac myocytes has not yet been fully established. To address this limitation, we have directly compared the hypertrophic responses of H9C2 cells with those of primary rat neonatal cardiomyocytes following stimulation with hypertrophic factors. Primary rat neonatal cardiomyocytes and H9C2 cells were cultured in vitro and treated with angiotensin II and endothelin-1 to promote hypertrophic responses. An increase in cellular footprint combined with rearrangement of cytoskeleton and induction of foetal heart genes were directly compared in both cell types using microscopy and real-time rtPCR. H9C2 cells showed almost identical hypertrophic responses to those observed in primary cardiomyocytes. This finding validates the importance of H9C2 cells as a model for in vitro studies of cardiac hypertrophy and supports current work with human cardiomyocyte cell lines for prospective molecular studies in heart development and disease.

Keywords

Cardiomyocyte Cardiac hypertrophy Angiotensin II Endothelin-1 

References

  1. Bogoyevitch M. A.; Clerk A.; Sugden P. H. Activation of the mitogen-activated protein kinase cascade by pertussis toxin-sensitive and -insensitive pathways in cultured ventricular cardiomyocytes. Biochem J 309(Pt 2): 437–443; 1995.PubMedGoogle Scholar
  2. Brunskill E. W.; Witte D. P.; Yutzey K. E.; Potter S. S. Novel cell lines promote the discovery of genes involved in early heart development. Dev Biol 235: 507–520; 2001.CrossRefPubMedGoogle Scholar
  3. Chien K. R.; Knowlton K. U.; Zhu H.; Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5: 3037–3046; 1991.PubMedGoogle Scholar
  4. Claycomb W. C.; Lanson Jr. N. A.; Stallworth B. S.; Egeland D. B.; Delcarpio J. B.; Bahinski A. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95: 2979–2984; 1998.CrossRefPubMedGoogle Scholar
  5. Davidson M. M.; Nesti C.; Palenzuela L.; Walker W. F.; Hernandez E.; Protas L. et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39: 133–147; 2005.CrossRefPubMedGoogle Scholar
  6. Dick E.; Rajamohan D.; Ronksley J.; Denning C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem. Soc. Trans. 38: 1037–1045; 2010.CrossRefPubMedGoogle Scholar
  7. Frank D.; Kuhn C.; van Eickels M.; Gehring D.; Hanselmann C.; Lippl S. et al. Calsarcin-1 protects against angiotensin II-induced cardiac hypertrophy. Circulation 116: 2587–2596; 2007.CrossRefPubMedGoogle Scholar
  8. Freund C.; Mummery C. L. Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 107: 592–599; 2009.CrossRefPubMedGoogle Scholar
  9. Goldman B. I.; Amin K. M.; Kubo H.; Singhal A.; Wurzel J. Human myocardial cell lines generated with SV40 temperature-sensitive mutant tsA58. In Vitro Cell Dev Biol Anim 42: 324–331; 2006.PubMedGoogle Scholar
  10. Hescheler J.; Meyer R.; Plant S.; Krautwurst D.; Rosenthal W.; Schultz G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69: 1476–1486; 1991.PubMedGoogle Scholar
  11. Huang C. Y.; Chueh P. J.; Tseng C. T.; Liu K. Y.; Tsai H. Y.; Kuo W. W. et al. ZAK reprograms atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun 324: 973–980; 2004a.CrossRefPubMedGoogle Scholar
  12. Huang C. Y.; Kuo W. W.; Chueh P. J.; Tseng C. T.; Chou M. Y.; Yang J. J. Transforming growth factor-beta induces the expression of ANF and hypertrophic growth in cultured cardiomyoblast cells through ZAK. Biochem Biophys Res Commun 324: 424–431; 2004b.CrossRefPubMedGoogle Scholar
  13. Hunter J. J.; Chien K. R. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341: 1276–1283; 1999.CrossRefPubMedGoogle Scholar
  14. Ito H.; Hirata Y.; Adachi S.; Tanaka M.; Tsujino M.; Koike A. et al. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92: 398–403; 1993.CrossRefPubMedGoogle Scholar
  15. Kimes B. W.; Brandt B. L. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98: 367–381; 1976.CrossRefPubMedGoogle Scholar
  16. Koekemoer A. L.; Chong N. W.; Goodall A. H.; Samani N. J. Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Lett 583: 2964–2967; 2009.CrossRefPubMedGoogle Scholar
  17. Padmasekar M.; Nandigama R.; Wartenberg M.; Schluter K. D.; Sauer H. The acute phase protein alpha2-macroglobulin induces rat ventricular cardiomyocyte hypertrophy via ERK1, 2 and PI3-kinase/Akt pathways. Cardiovasc Res 75: 118–128; 2007.CrossRefPubMedGoogle Scholar
  18. Pedram A.; Razandi M.; Aitkenhead M.; Levin E. R. Estrogen inhibits cardiomyocyte hypertrophy in vitro. Antagonism of calcineurin-related hypertrophy through induction of MCIP1. J Biol Chem 280: 26339–26348; 2005.CrossRefPubMedGoogle Scholar
  19. Rao F.; Deng C. Y.; Wu S. L.; Xiao D. Z.; Yu X. Y.; Kuang S. J. et al. Involvement of Src in L-type Ca2+ channel depression induced by macrophage migration inhibitory factor in atrial myocytes. J Mol Cell Cardiol 47: 586–594; 2009.CrossRefPubMedGoogle Scholar
  20. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63: 423–432; 2004.CrossRefPubMedGoogle Scholar
  21. Shimojo N.; Jesmin S.; Zaedi S.; Maeda S.; Soma M.; Aonuma K. et al. Eicosapentaenoic acid prevents endothelin-1-induced cardiomyocyte hypertrophy in vitro through the suppression of TGF-beta 1 and phosphorylated JNK. Am J Physiol Heart Circ Physiol 291: H835–H845; 2006.CrossRefPubMedGoogle Scholar
  22. Shubeita H. E.; McDonough P. M.; Harris A. N.; Knowlton K. U.; Glembotski C. C.; Brown J. H. et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 265: 20555–20562; 1990.PubMedGoogle Scholar
  23. Sipido K. R.; Marban E. L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ Res 69: 1487–1499; 1991.PubMedGoogle Scholar
  24. Sreejit P.; Kumar S.; Verma R. S. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell Dev Biol Anim 44: 45–50; 2008.CrossRefPubMedGoogle Scholar
  25. Steinhelper M. E.; Lanson Jr. N. A.; Dresdner K. P.; Delcarpio J. B.; Wit A. L.; Claycomb W. C. et al. Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Physiol 259: H1826–H1834; 1990.PubMedGoogle Scholar
  26. Sugden P. H. Signaling pathways activated by vasoactive peptides in the cardiac myocyte and their role in myocardial pathologies. J Card Fail 8: S359–S369; 2002.CrossRefPubMedGoogle Scholar
  27. Vandesompele J.; De Preter K.; Pattyn F.; Poppe B.; Van Roy N.; De Paepe A. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034; 2002.CrossRefPubMedGoogle Scholar
  28. Vindis C.; D'Angelo R.; Mucher E.; Negre-Salvayre A.; Parini A.; Mialet-Perez J. Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun 391: 979–983; 2010.CrossRefPubMedGoogle Scholar
  29. Wang Z.; Cao Y.; Shen X.; Bu X.; Bao Y.; Le K. et al. Inhibition of endothelin converting enzyme-1 activity or expression ameliorates angiotensin II-induced myocardial hypertrophy in cultured cardiomyocytes. Pharmazie 64: 755–759; 2009.PubMedGoogle Scholar
  30. Watkins S. J.; Jonker L.; Arthur H. M. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy. Cardiovasc Res 69: 432–439; 2006.CrossRefPubMedGoogle Scholar
  31. Zhou Y.; Jiang Y.; Kang Y. J. Copper inhibition of hydrogen peroxide-induced hypertrophy in embryonic rat cardiac H9c2 cells. Exp Biol Med (Maywood) 232: 385–389; 2007.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Sarah J. Watkins
    • 1
  • Gillian M. Borthwick
    • 1
  • Helen M. Arthur
    • 1
  1. 1.Institute of Human GeneticsNewcastle UniversityNewcastleUK

Personalised recommendations