Advertisement

Hepatoprotective and antioxidant effects of Hibiscus sabdariffa extract against carbon tetrachloride-induced hepatocyte damage in Cyprinus carpio

  • Guojun YinEmail author
  • Liping Cao
  • Pao Xu
  • Galina Jeney
  • Miki Nakao
Report

Abstract

The present study aims to evaluate the hepatoprotective and antioxidant effects of Hibiscus sabdariffa extract on the carbon tetrachloride (CCl4)-induced hepatocyte damage in fish and provide evidence as to whether it can be potentially used as a medicine for liver diseases in aquaculture. H. sabdariffa extract (100, 200, and 400 μg/mL) was added to the carp primary hepatocyte culture before (pre-treatment), after (post-treatment), and both before and after (pre- and post-treatment) the incubation of the hepatocytes with CCl4. CCl4 at 8 mM in the culture medium produced significantly elevated levels of lactate dehydrogenase (LDH), glutamate oxalate transaminase (GOT), glutamate pyruvate transaminase (GPT), and malondialdehyde (MDA) and significantly reduced levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Pre-treatment and pre- and post-treatment of the hepatocytes with H. sabdariffa extract significantly reduced the elevated levels of LDH, GOT, GPT, and MDA and increased the reduced activities of SOD and GSH-Px in a dose-dependent manner; post-treatment did not show any protective effect. The results suggest that H. sabdariffa extract can be potentially used for preventing rather than curing liver diseases in fish.

Keywords

Hibiscus sabdariffa extract Carbon tetrachloride Hepatoprotection Antioxidant Cyprinus carpio 

Notes

Acknowledgments

This study was funded by Ministry of Science and Technology of the People's Republic of China (2009DFA32620), co-funded by Department of Science and Technology of Jiangsu (BZ2008008), Wuxi Municipal Bureau on Science and Technology (CZE00906), and Central Public-Interest Scientific Institution Basal Research Fund (6-115009).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Brattin W. J.; Glende Jr. E. A.; Recknagel R. O. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J. Free Radic. Biol. Med 1: 27–38; 1985.CrossRefPubMedGoogle Scholar
  2. Chewonarin T.; Kinouchi T.; Kataoka K.; Arimochi H.; Kuwahara T.; Vinitketkumnuen U.; Ohnishi Y. Effects of roselle (Hibiscus sabdariffa Linn.), a Thai medicinal plant, on the mutagenicity of various known mutagens in Salmonella typhimurium and on formation of aberrant crypt foci induced by the colon carcinogens azoxymethane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in F344 rats. Food. Chem. Toxicol 37: 591–601; 1999.CrossRefPubMedGoogle Scholar
  3. Dafallah A. A.; al-Mustafa Z. Investigation of the antiinflammatory activity of Acacia nilotica and Hibiscus sabdariffa. Am. J. Chinese Med. 24: 263–269; 1996.CrossRefGoogle Scholar
  4. Esterbauer H. Lipid peroxidation products: formation, chemical properties and biological activities. In: Cheeseman K. H.; Diazani M. U.; Slater T. F. (eds) Free radicals in liver injury. Churchill Livingstone, Edinburgh, pp 29–47; 1985.Google Scholar
  5. Hu Y. Y.; Liu C. H.; Wang R. P.; Liu C.; Liu P.; Zhu D. Y. Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro. World J. Gastroenterol. 6: 402–404; 2000.PubMedGoogle Scholar
  6. Koneri R.; Balaraman R.; Firdous; Vinoth Kumar M. Hepatoprotective effects of Momordica cymbalaria Fenzl. against carbon tetrachloride induced hepatic injury in rats. Pharmacologyonline 1: 365–374; 2008.Google Scholar
  7. Lee C. Y.; Peng W. H.; Cheng H. Y.; Chen F. N.; Lai M. T.; Chui T. H. Hepatoprotective effect of Phyllanthus in Taiwan on acute liver damage induced by carbon tetrachloride. Am. J. Chinese Med. 34: 471–482; 2006.CrossRefGoogle Scholar
  8. Lee K. J.; Choi J. H.; Kim H. G.; Han E. H.; Hwang Y. P.; Lee Y. C.; Chung Y. C.; Jeong H. G. Protective effect of saponins derived from the roots of Platycodon grandiflorum against carbon tetrachloride induced hepatotoxicity in mice. Food Chem. Toxicol. 46: 1778–1785; 2008.CrossRefPubMedGoogle Scholar
  9. Liu J. Y.; Chen C. C.; Wang W. H.; Hsu J. D.; Yang M. Y.; Wang C. J. The protective effects of Hibiscus sabdariffa extract on CCl4-induced liver fibrosis in rats. Food Chem. Toxicol. 44: 336–343; 2006.CrossRefPubMedGoogle Scholar
  10. Myers M. S.; Landahl J. T.; Krahn M. M.; Johnson L. L.; McCain B. B. Overview of studies on liver carcinogenesis in English sole from Puget Sound; evidence for a xenobiotic chemical etiology I: pathology and epizootiology. Sci. Total Environ. 94: 33–50; 1990.CrossRefPubMedGoogle Scholar
  11. Myers M. S.; Landahl J. T.; Krahn M. M.; McCain B. B. Relationship between hepatic neoplasms and related lesions and exposure to toxic chemicals in marine fish from tire U.S. West Coast. Environ. Health Persp 90: 7–15; 1991.CrossRefGoogle Scholar
  12. Nimmo I. A. The glutathione S-transferases of fish. Fish Physiol. Biochem. 3: 163–172; 1987.CrossRefGoogle Scholar
  13. Part P.; Norrgren L.; Bergstrom E.; Sjoberg P. Primary cultures of epithelial cells from rainbow trout gills. J. Exp. Bio. 175: 219–232; 1993.Google Scholar
  14. Pesonen M.; Goksoyr A.; Andersson T. Expression of P4501A1 in a primary culture of rainbow trout hepatocytes exposed to b-naphthoflavone or 2, 3, 7, 8-tetrochlorodibenzo-pdioxin. Arch. Biochem. Biophys. 292: 228–233; 1992.CrossRefPubMedGoogle Scholar
  15. Rechnagel R. O.; Glende Jr. E. A. Carbon tetrachloride hepatotoxicity: an example of lethal cleavage. CRC Crit. Rev. Toxicol 2: 263–297; 1973.CrossRefPubMedGoogle Scholar
  16. Sachdewa A.; Khemani L. D. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J. Ethnopharmacol. 89: 61–66; 2003.CrossRefPubMedGoogle Scholar
  17. Shen X.; Tang Y.; Yang R.; Yu L.; Fang T.; Duan J. A. The protective effect of Zizyphus jujube fruit on carbon tetrachloride-induced hepatic injury in mice by anti-oxidative activities. J. Ethnopharmacol. 122: 555–60; 2009.CrossRefPubMedGoogle Scholar
  18. Situ Z. Q.; Wu J. Z. Cell culture. World Publishing House of Books, Beijing, China; 1996.Google Scholar
  19. Smeets J. M. W.; Rankouhi T. R.; Nichols K. M.; Komen H.; Kaminski N. E.; Giesy J. P.; Berg M. In vitro vitellogenin production by carp (Cyprinus carpio) hepatocytes as a screening method for determining (anti) estrogenic activity of xenobiotics. Toxicol. Appl. Pharmacol. 157: 68–76; 1999.CrossRefPubMedGoogle Scholar
  20. Tseng T. H.; Kao E. S.; Chu C. Y.; Chou F. P.; Lin Wu H. W.; Wang C. J. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food. Chem. Toxicol. 35: 1159–1164; 1997.CrossRefPubMedGoogle Scholar
  21. Tseng T. H.; Wang C. J.; Kao E. S.; Chu H. Y. Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem. Biol. Interact 101: 137–148; 1996.CrossRefPubMedGoogle Scholar
  22. Triebskorn R.; Casper H.; Heyd A.; Eikemper R.; Köhler H. R.; Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac, part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 68: 151–166; 2004.CrossRefPubMedGoogle Scholar
  23. Wan X.; Ma T.; Wu W.; Wang Z. EROD activities in a primary cell culture of grass carp (Ctenopharyngodon idellus) hepatocytes exposed to polychlorinated aromatic hydrocarbonas. Ecotox. Environ. Safe. 58: 84–89; 2004.CrossRefGoogle Scholar
  24. Wang C.; Wang J.; Lin W.; Chu C.; Chou F.; Tseng T. Protective effect of hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 38: 411–416; 2000.CrossRefPubMedGoogle Scholar
  25. Wahabi H. A.; Alansary L. A.; Al-Sabban A. H.; Glasziuo P. The effectiveness of Hibiscus sabdariffa in the treatment of hypertension: a systematic review. Phytomedicine. 17: 83–86; 2010.CrossRefPubMedGoogle Scholar
  26. Winston G. W.; DiGiulio R. T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137–161; 1991.CrossRefGoogle Scholar
  27. Winston G. W.; Moore M. N.; Kirchin M. A.; Soverchia C. Production of reactive oxygen species by hemocytesfrom the marine mussel. Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp. Biochem. Phys. C 113: 221–229; 1996.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Guojun Yin
    • 1
    Email author
  • Liping Cao
    • 1
  • Pao Xu
    • 1
  • Galina Jeney
    • 2
  • Miki Nakao
    • 3
  1. 1.Key Open Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Ministry of AgricultureFreshwater Fisheries Research Center of Chinese Academy of Fishery ScienceWuxiChina
  2. 2.Research Institute for Fisheries, Aquaculture and IrrigationSzarvasHungary
  3. 3.Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan

Personalised recommendations