Morphological and biological characterization of cell line developed from bovine Echinococcus granulosus

  • Claudia I. Echeverría
  • Dora M. Isolabella
  • Elio A. Prieto Gonzalez
  • Araceli Leonardelli
  • Laura Prada
  • Alina Perrone
  • Alicia G. FuchsEmail author


The taeniid tapeworm Echinococcus granulosus is the causative agent of echinococcal disease, a major zoonosis with worldwide distribution. Several efforts to establish an in vitro model of E. granulosus have been undertaken; however, many of them have been designed for Echinococcus multilocularis. In the present study, we have described and characterized a stable cell line obtained from E. granulosus bovine protoscoleces maintained 3 yr in vitro. Growth characterization, morphology by light, fluorescent and electronic microscopy, and karyotyping were carried out. Cell culture origin was confirmed by immunofluorescent detection of AgB4 antigen and by PCR for the mitochondrial cytochrome c-oxidase subunit 1 (DCO1) gene. Cells seeded in agarose biphasic culture resembled a cystic structure, similar to the one formed in secondary hosts. This cell line could be a useful tool to research equinococcal behavior, allowing additional physiological and pharmacological studies, such as the effect of growth factors, nutrients, and antiparasitic drugs on cell viability and growth and on cyst formation.


Echinococcus granulosus Cell line characterization Cyst formation 



This project was performed with a grant from Universidad Abierta Interamericana, Buenos Aires, Argentina. This work is dedicated to the loving memory of the late Dr. Ignacio Reisin who encouraged the development of this cellular model. We thank Dr. Mara Rosenzvit for providing the anti-AgB4 antibody, students Adrian Mansini and Karina Campos for their technical help, María Teresa Politi for critically reading the manuscript, and Laura Politi for her contributions in graphics design. Laura Prada is a FONCYT fellow (Argentina). This work is part of a requested patent to INPI P-090102320 Argentina of the Universidad Abierta Interamericana, inventor Alicia G. Fuchs.


  1. Bortoletti G.; Diaz G. Stereological investigation on the increase in surface area due to the microtriches of the hydatid cyst in different organs and in different hosts. Int. J. Parasitol. 8: 433–436; 1978.CrossRefPubMedGoogle Scholar
  2. Bortoletti G.; Ferretti G. Ultrastructural aspects of fertile and sterile cysts of Echinococcus granulosus developed in hosts of different species. Int. J. Parasitol. 8: 421–431; 1978.CrossRefPubMedGoogle Scholar
  3. Brehm K.; Spiliotis M. Recent advances in the in vitro cultivation and genetic manipulation of Echinococcus multilocularis metacestodes and germinal cells. Exp. Parasitol. 119: 506–515; 2008.CrossRefPubMedGoogle Scholar
  4. Brehm K.; Spiliotis M.; Zavala-Gongora R.; Konrad C.; Frosch M. The molecular mechanism of larval cestode development: first steps into unknown world. Parasitol. Int. 55: S15–S21; 2006.CrossRefPubMedGoogle Scholar
  5. Cabrera M.; Canova S.; Rosenzvit M.; Guarnera E. Identification of Echinococcus granulosus eggs. Diagn. Microbiol. Infect. Dis. 4: 29–34; 2002.CrossRefGoogle Scholar
  6. Cabrera P. A.; Irabedra P.; Orlando D.; Rista L.; Harán G.; Viñals G.; Blanco M. T.; Alvarez M.; Elola S.; Morosoli D.; Moraña A.; Bondad M.; Sambrán Y.; Heinzen T.; Chand L.; Piñeyro L.; Pérez D.; Pereyra I. National prevalence of larval echinococcosis in sheep in slaughtering plants Ovis aries as an indicator in control programmes in Uruguay. Acta. Tropica. 85: 281–285; 2003.CrossRefPubMedGoogle Scholar
  7. Carmena D.; Benito A.; Eraso E. Antigens for inmunodiagnosis of Echinococcus granulosus infection: an update. Acta. Tropica. 98: 74–86; 2006.CrossRefPubMedGoogle Scholar
  8. Casado N.; Rodriguez Caabeiro F. Ultrastructural study of in vitro larval development of Echinococcus granulosus protoscoleces. Int. J. Parasitol. 19: 21–28; 1989.CrossRefPubMedGoogle Scholar
  9. Craig P. S.; McManus D. P.; Lightowlers M. W.; Chabalgoity J. A.; Garcia H. H.; Gavidia C. M.; Gilman R. H; Gonzalez A. E.; Lorca M.; Naquira C.; Nieto A.; Schantz P. M. Prevention and control of cystic echinococcosis. Lancet. Infect. Dis. 7: 385–394; 2007.CrossRefPubMedGoogle Scholar
  10. D’Alessandro A. Descripción morfológica, ciclo biológico y distribución geográfica de las especies del género Echinococcus. In: Denegri GM, Elissondo MC, Dopchiz MC (eds) Situación de la hidatidosis en la Argentina-Echinococcosis en la República Argentina. Martin (Mar del Plata, Argentina), ISBN 987-543-024-2, pp 19–30; 2002.Google Scholar
  11. Dieckman A.; Frank W. Isolation of viable germinal cells from Echinococcus multilocularis. Parasitol. Res. 74: 297–298; 1988.CrossRefGoogle Scholar
  12. Dynek J. N., Smith S. Resolution of sister telomere association is required for progression through mitosis. Science 304: 97–100; 2004.CrossRefPubMedGoogle Scholar
  13. Fernandes T. S.; Lloyd D.; Amaral A. A comparison of different cytological stains for biological dosimetry. Int. J. Radiat. Biol. 84: 703–711; 2008.CrossRefPubMedGoogle Scholar
  14. Fernández C.; Gregory W. F.; Loke P.; Maizels R. M. Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences. Mol. Biochem. Parasitol. 122: 171–180; 2002.CrossRefPubMedGoogle Scholar
  15. Fiori P. L.; Monaco G.; Scapaticci S.; Pugliese A.; Canu N.; Cappuccinelli P. Establishment of cell culture from hydatid cysts of Echinococcus granulosus. Int J. Parasitol. 18: 297–305; 1988.CrossRefPubMedGoogle Scholar
  16. Fuchs A. G. (solicitada 24-06-08) “Línea celular de protoescólices de Echinococcus SP”. Procedimiento para la obtener estructuras quísticas y método para evaluar la actividad de drogas antiparasitarias. Universidad Abierta Interamericana. Instituto Nacional de la Propiedad Industrial (INPI) P-090102320.Google Scholar
  17. Furuya K. An established cell line of larval Echinococcus multilocularis. Int. J. Parasitol. 21: 233–40; 1991.CrossRefPubMedGoogle Scholar
  18. Galindo M.; Paredes R.; Marchant C.; Miño V.; Galanti N. Regionalization of DNA and protein synthesis in developing stages of the parasitic platyhelminth Echinococcus granulosus. J. Cell. Biochem. 90: 294–303; 2003.CrossRefPubMedGoogle Scholar
  19. Galindo M.; Schadebrodt G.; Galanti N. Echinococcus granulosus: cellular territories and morphological regions in mature protoscoleces. Exp. Parasitol. 119: 524–533; 2008.CrossRefPubMedGoogle Scholar
  20. Harris A.; Heath D. D.; Lawrence S. B.; Sjaw R. J. Echinococcus granulosus: ultrastructure of epithelial changes during the first 8 d of metacestode development in vitro. Int J. Parasitol. 19: 621–629; 1989.CrossRefPubMedGoogle Scholar
  21. Heath D. D.; Lawrence S. B. Echinococcus granulosus: development in vitro from oncosphere to immature hydatid cyst. Parasitology 73: 417–423; 1976.CrossRefPubMedGoogle Scholar
  22. Heath D. D.; Lawerence S. B. Echinococcus granulosus cysts: early development in vitro in the presence of serum from infected sheep. Int. J. Parastol. 11: 261–266; 1981.CrossRefPubMedGoogle Scholar
  23. Heath D. D.; Osborn P. J. Formation of Echinococcus granulosus laminated membrane in a defined medium. Int. J. Parasitol. 6: 467–471; 1976.CrossRefPubMedGoogle Scholar
  24. Hedgecock E. M.; White J. G. Polyploid tisues in the nematode Caenorhabditis elegans. Dev. Biol. 107: 128–133; 1985.CrossRefPubMedGoogle Scholar
  25. Hemphill A.; Gottstein B. Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestode. Parasitol. Res. 81: 605–614; 1995.CrossRefPubMedGoogle Scholar
  26. Hemphill A.; Stettler M.; Walker M.; Siles-Lucas M.; Fink R.; Gottstein B. Culture of Echinococcus multilocularis metacestods : an alternative to animal use. Trends. Parasitol. 18: 445-451; 2002.CrossRefPubMedGoogle Scholar
  27. Hodgkin J. Karyotype, ploidy, and gene dosage. In: WormBook. (ed) The C. elegans research community; 2005. 10.1895/wormbook.1.3.1.
  28. Li Y. S.; Fan Y. S.; Armstrong R. F. Endoreduplication and telomeric association in a choroid plexus carcinoma. Cancer. Genet. Cytogenet. 87: 7–10; 1996.CrossRefPubMedGoogle Scholar
  29. Liu J.; Gu H.; Wang A.; Chen Y. Establishment of germinal cell line of Echinococcus granulosus (Abstract). Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 16: 353–356; 1998.PubMedGoogle Scholar
  30. Lordier L.; Jalil A.; Aurade F.; Larbret F.; Larghero G.; Debili N.; Vainchenker W.; Chang Y. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring an Rho/Rock signaling. Blood 112: 3164–3174; 2008.CrossRefPubMedGoogle Scholar
  31. Mamuti W.; Sako Y.; Xiao N.; Nakaya K.; Nakao M.; Yamasaki H.; Lightowlers M. W.; Craig P. S.; Ito A. Echinococcus multilocularis: developmental stage-specific expression of antigen B 8-kDa-subunits. Exp. Parasitol. 113: 75–82; 2006.CrossRefPubMedGoogle Scholar
  32. Martínez C.; Paredes R.; Stock R. P.; Saralegui A.; Andreu M.; Cabezón C.; Ehrlich R.; Galanti N. Cellular organization and appearance of differentiated structures in developing stages of the parasitic platyhelminth Echinococcus granulosus. J. Cell. Biochem. 94: 327–335; 2005.CrossRefPubMedGoogle Scholar
  33. Petkeviciūte R.; Bondarenko S. K. Comparative karyological studies on the species of Eubothrium Nybelin. (Cestoda: Pseudophyllidea). Syst. Parasitol. 50: 127–134; 2001.CrossRefPubMedGoogle Scholar
  34. Petkeviciüte R. A. Chromosoma study in the progenetic cestode Cyathocephalus truncatus (Cestoda:Spathebothriidea). Int. J. Parasitol. 26: 1211–1216; 1996.CrossRefPubMedGoogle Scholar
  35. Ponce Gordo F.; Cuesta Bandera C. Echinococcus granulosus: observastions on strobilar development in in vitro monophasic culture. J. Helminthol. 68: 173–175; 1995.CrossRefGoogle Scholar
  36. Raucsh V. R.; Rausch R. L. The karyotype of Echinococcus multilocularis (Cestoda: Taeniidae). Can. J. Genet. Cytol. 23: 151–154; 1981.Google Scholar
  37. Richards K. S.; Arme C.; Bridges J. F. Echinococcus granulosus equinos: an ultrastructural study of the laminated layer, including changes on incubating cysts in various media. Parasitology 86: 399–405; 1983.CrossRefPubMedGoogle Scholar
  38. Sanchez F.; Garcia J.; March F.; Cardeñosa N.; Coll F.; Muñoz C.; Auladell C.; Prats G. Ultrastructural localization of major hydatid fluid antigens in brood capsules and protoscoleces of Echinococcus granulosus of human origin. Parasite. Immunol. 15: 441–447; 1993.CrossRefPubMedGoogle Scholar
  39. Sanchez F.; March F.; Mercader M.; Coll P.; Muñoz C.; Prats G. Immunochemical localization of major hydatid fluid antigens in protoscoleces and cysts of Echinococcus granulosus from human origin. Parasite. Immunol. 13(6): 583–592; 1991.CrossRefPubMedGoogle Scholar
  40. Shepherd J. C.; Aitken A.; McManus D. F. A protein secreted in vivo by Echinococcus granulosus inhibits elastase activity and neutrophil chemotaxis. Mol. Biochem. Parasitol. 44: 81–90; 1991.CrossRefPubMedGoogle Scholar
  41. Smyth J. D. (ed). In vitro cultivation of parasitic helminths. CRC, Boca Ratón, p 276. ISBN 0-8493-4586-3; 1990.Google Scholar
  42. Smyth J. D.; Miller H. J.; Howkins A. B. Further analysis of the factors controlling strobilization, differentiation, and maduration of Echinococcus granulosus in vitro. Exp. Parasitol. 21: 31–41; 1967.CrossRefPubMedGoogle Scholar
  43. Spiliotis M.; Brehm K. Axenic in vitro cultivation of Echinococcus multilocularis metacestode vesicles and the generation of primary cell cultures, chapter 17. In: Steffen Rupp, Kai Sohn (eds) Host–pathogen interactions. Humana Press, Totowa; 2008. doi: 10.1007/978-1-59745-204-5_17
  44. Spiliotis M.; Lechner S.; Tappe D.; Scheller C.; Krhone G.; Brehm K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int. J. Parasitol. 38: 1025–3109; 2008.CrossRefPubMedGoogle Scholar
  45. Spiliotis M.; Tappe D.; Sesterhenn L.; Brehm K. Long term in vitro cultivation of Echinococcus multilocularis metacestodes under axenic conditions. Parasitol. Res. 92: 430–432; 2004.CrossRefPubMedGoogle Scholar
  46. Swire J.; Fuchs S.; Bundy J. G.; Leroi A. M. The cellular geometry of growth drives the amino acid economy of Caenorhabditis elegans. Proc. Biol. Sci. 276: 2747–2754; 2009.CrossRefPubMedGoogle Scholar
  47. Vidor E.; Piens M. A.; Abbas M.; Petavy A. F. Hydatid cyst fluid (Echinococcus granulosus) biochemistry. Influence of site on cyst permeability. Ann. Parasitol. Hum. Comp. 61: 333–340; 1986.PubMedGoogle Scholar
  48. Yamashita K.; Uchino J.; Sato N.; Foruya K.; Namieno T. Establishment of a primary culture of Echinococcus multilocularis germinal cells. J. Gastroenterol. 32: 344–350; 1997.CrossRefPubMedGoogle Scholar
  49. Yarzabal L. A.; Dupas H.; Bout D.; Naquira F.; Capron A. Echinococcus granulosus: the distribution of hydatid fluid antigens in tissues of the larval stage. II. Localization of the thermostable lipoprotein of parasitic origin (antigen B). Exp. Parsitol. 42: 115–120; 1977.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Claudia I. Echeverría
    • 1
  • Dora M. Isolabella
    • 2
  • Elio A. Prieto Gonzalez
    • 1
  • Araceli Leonardelli
    • 1
  • Laura Prada
    • 3
  • Alina Perrone
    • 1
  • Alicia G. Fuchs
    • 1
    Email author
  1. 1.Centro de Altos Estudios en Ciencias de la Salud (CAECIS)Universidad Abierta Interamericana (UAI)Buenos AiresArgentina
  2. 2.Departamento de Farmacología, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Microbiología, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations