Advertisement

The effect of human embryonic stem cells (hESCs) long-term normoxic and hypoxic cultures on the maintenance of pluripotency

  • Vladimir Zachar
  • Sinha M. Prasad
  • Simon C. Weli
  • Anette Gabrielsen
  • Karsten Petersen
  • Michael B. Petersen
  • Trine Fink
Article

Abstract

The maintenance of pluripotency of human embryonic stem cells (hESCs) requires a high efficiency of self-renewal. During in vitro propagation, however, spontaneous differentiation occurs frequently, and there is also a risk of chromosomal changes. In this study, we assessed the properties of hESCs after long-term culture at ambient air and 5% oxygen growth conditions. The hESC lines were grown for up to 42 and 18 mo in normoxic and hypoxic conditions, respectively, and their proliferation; expression of Oct4, SSEA1, Nanog, and Notch1; karyotype; telomerase activity; and differentiation potential in vitro were evaluated. In contrast to cultures at 20% oxygen, where the central zones of the colonies underwent spontaneous differentiation, during exposure to 5% oxygen, the hESC colonies maintained a homogenous and flat morphology that was consistent with the presence of Oct4-positive undifferentiated phenotype. Irrespective of oxygen concentration, the undifferentiated cells expressed high levels of Nanog and Oct4 transcripts, normal karyotype, and high telomerase activity. When assayed for differentiation potential, they yielded derivatives of all three embryonic germ layers. Our data thus indicate that hypoxic exposure has the capacity to sustain enhanced long-term self-renewal of hESCs. The hESC lines described in the current paper can be obtained for research purposes from the Laboratory for Stem Cell Research, Aalborg University.

Keywords

Human embryonic stem cells Hypoxia Oxygen Self-renewal Pluripotency Long-term culture 

Notes

Acknowledgments

The authors wish to recognize financial support from The John and Birthe Meyer, Carlsberg, and Toyota Foundations, and the EU LSHC-CT-2003-502932 (EUROXY) and Danish Medical Research Council 2052-01-0045 grants. The expert technical assistance of Ole Jensen and Helle Skjødt Møller is highly appreciated.

References

  1. Adewumi O.; Aflatoonian B.; Ahrlund-Richter L.; Amit M.; Andrews P. W.; Beighton G. et al. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25: 803–816; 2007.CrossRefPubMedGoogle Scholar
  2. Bakre M. M.; Hoi A.; Mong J. C.; Koh Y. Y.; Wong K. Y.; Stanton L. W. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J Biol Chem 282: 31703–31712; 2007.CrossRefPubMedGoogle Scholar
  3. Bigdeli N.; Andersson M.; Strehl R.; Emanuelsson K.; Kilmare E.; Hyllner J. et al. Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol;133:146–153 2007.Google Scholar
  4. Chen H. F.; Kuo H. C.; Chien C. L.; Shun C. T.; Yao Y. L.; Ip P. L. et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 22: 567–577; 2007.CrossRefPubMedGoogle Scholar
  5. Chen L.; Fink T.; Ebbesen P.; Zachar V. Hypoxic treatment inhibits insulin-induced chondrogenesis of ATDC5 cells despite upregulation of DEC1. Connect Tissue Res 47: 119–123; 2006a.CrossRefPubMedGoogle Scholar
  6. Chen L.; Fink T.; Ebbesen P.; Zachar V. Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions. Tissue Eng 12: 559–567; 2006b.CrossRefPubMedGoogle Scholar
  7. Danielsson B. R.; Danielsson C.; Nilsson M. F. Embryonic cardiac arrhythmia and generation of reactive oxygen species: common teratogenic mechanism for IKr blocking drugs. Reprod Toxicol 24: 42–56; 2007.CrossRefPubMedGoogle Scholar
  8. Davidson K. C.; Jamshidi P.; Daly R.; Hearn M. T.; Pera M. F.; Dottori M. Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci 36: 408–415; 2007.CrossRefPubMedGoogle Scholar
  9. Dreesen O.; Brivanlou A. H. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3: 7–17; 2007.CrossRefPubMedGoogle Scholar
  10. Ellerstrom C.; Strehl R.; Noaksson K.; Hyllner J.; Semb H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25: 1690–1696; 2007.CrossRefPubMedGoogle Scholar
  11. Ezashi T.; Das P.; Roberts R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102: 4783–4788; 2005.CrossRefPubMedGoogle Scholar
  12. Fehrer C.; Brunauer R.; Laschober G.; Unterluggauer H.; Reitinger S.; Kloss F.; et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell;6:745–757. 2007.Google Scholar
  13. Ferguson 3rd J. E.; Wu Y.; Smith K.; Charles P.; Powers K.; Wang H. et al. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol 27: 6407–6419; 2007.CrossRefPubMedGoogle Scholar
  14. Fink T.; Abildtrup L.; Fogd K.; Abdallah B. M.; Kassem M.; Ebbesen P. et al. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22: 1346–1355; 2004.CrossRefPubMedGoogle Scholar
  15. Gerecht S.; Burdick J. A.; Ferreira L. S.; Townsend S. A.; Langer R.; Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104: 11298–11303; 2007.CrossRefPubMedGoogle Scholar
  16. Giordano A.; Galderisi U.; Marino I. R. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211: 27–35; 2007.CrossRefPubMedGoogle Scholar
  17. Gosden C.; Davidson C.; Robertson M. Human cytogenetics: a practical approach. Oxford University Press, Oxford; 1992.Google Scholar
  18. Gustafsson M. V.; Zheng X.; Pereira T.; Gradin K.; Jin S.; Lundkvist J. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9: 617–628; 2005.CrossRefPubMedGoogle Scholar
  19. Jeong C. H.; Lee H. J.; Cha J. H.; Kim J. H.; Kim K. R.; Yoon D. K. et al. Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in Vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J Biol Chem 282: 13672–13679; 2007.CrossRefPubMedGoogle Scholar
  20. Lee S. H.; Heo J. S.; Han H. J. Effect of hypoxia on 2-deoxyglucose uptake and cell cycle regulatory protein expression of mouse embryonic stem cells: involvement of Ca2+ /PKC, MAPKs and HIF-1alpha. Cell Physiol Biochem 19: 269–282; 2007.CrossRefPubMedGoogle Scholar
  21. Lysdahl H.; Gabrielsen A.; Minger S. L.; Patel M. J.; Fink T.; Petersen K. et al. Derivation and characterization of four new human embryonic stem cell lines: the Danish experience. Reprod Biomed Online 12: 119–126; 2006.PubMedCrossRefGoogle Scholar
  22. Metallo C. M.; Ji L.; de Pablo J. J.; Palecek S. P. Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells;26:372–380. 2007.Google Scholar
  23. Mfopou J. K.; De Groote V.; Xu X.; Heimberg H.; Bouwens L. Sonic hedgehog and other soluble factors from differentiating embryoid bodies inhibit pancreas development. Stem Cells 25: 1156–1165; 2007.CrossRefPubMedGoogle Scholar
  24. Odorico J. S.; Kaufman D. S.; Thomson J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19: 193–204; 2001.CrossRefPubMedGoogle Scholar
  25. Pan G.; Thomson J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17: 42–49; 2007.CrossRefPubMedGoogle Scholar
  26. Pilgaard L.; Lund P.; Duroux M.; Lockstone H.; Taylor J.; Emmersen J.; et al. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions. Experi. Cell. Res. epub.; 2009.Google Scholar
  27. Prasad S. M.; Czepiel M.; Cetinkaya C.; Smigielska K.; Weli S. C.; Lysdahl H. et al. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif 42: 63–74; 2009.CrossRefPubMedGoogle Scholar
  28. Sahlgren C.; Lendahl U. Notch signaling and its integration with other signaling mechanisms. Regen Med 1: 195–205; 2006.CrossRefPubMedGoogle Scholar
  29. Schroeder T.; Meier-Stiegen F.; Schwanbeck R.; Eilken H.; Nishikawa S.; Hasler R. et al. Activated Notch1 alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech Dev 123: 570–579; 2006.CrossRefPubMedGoogle Scholar
  30. Sun Y.; Li H.; Yang H.; Rao M. S.; Zhan M. Mechanisms controlling embryonic stem cell self-renewal and differentiation. Crit Rev Eukaryot Gene Expr 16: 211–231; 2006.PubMedGoogle Scholar
  31. Toh W. S.; Yang Z.; Liu H.; Heng B. C.; Lee E. H.; Cao T. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25: 950–60; 2007.CrossRefPubMedGoogle Scholar
  32. Wang L.; Schulz T. C.; Sherrer E. S.; Dauphin D. S.; Shin S.; Nelson A. M.; et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood;110:4111–4119. 2007.Google Scholar
  33. Xu R. H.; Peck R. M.; Li D. S.; Feng X.; Ludwig T.; Thomson J. A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2: 185–190; 2005.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Vladimir Zachar
    • 1
  • Sinha M. Prasad
    • 1
  • Simon C. Weli
    • 1
  • Anette Gabrielsen
    • 2
  • Karsten Petersen
    • 2
  • Michael B. Petersen
    • 3
  • Trine Fink
    • 1
  1. 1.Laboratory for Stem Cell ResearchAalborg UniversityAalborgDenmark
  2. 2.Ciconia, Aarhus Private HospitalHoejbjergDenmark
  3. 3.Department of Clinical Genetics, The Juliane Marie CentreCopenhagen University HospitalCopenhagenDenmark

Personalised recommendations