High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis

  • Philippe Tropel
  • Johana Tournois
  • Julien Côme
  • Christine Varela
  • Céline Moutou
  • Pascal Fragner
  • Michel Cailleret
  • Yacine Laâbi
  • Marc Peschanski
  • Stéphane Viville
Article

Abstract

Pre-implantation genetic diagnosis allows the characterisation of embryos that carry a gene responsible for a severe monogenic disease and to transfer to the mother’s uterus only the unaffected one(s). The genetically affected embryos can be used to establish human embryonic stem cell (hESC) lines. We are currently establishing a cell bank of ESC lines carrying specific disease-causing mutant genes. These cell lines are available to the scientific community. For this purpose, we have designed a technique that requires only minimal manipulation of the embryos. At the blastocyst stage, we just removed the zona pellucida before seeding the embryo as a whole on a layer of feeder cells. This approach gave a good success rate (>20%), whatever the quality of the embryos, and allowed us to derive 11 new hESC lines, representing seven different pathologies. Full phenotypic validation of the cell lines according to ISCI guidelines confirmed their pluripotent nature, as they were positive for hESC markers and able to differentiate in vitro in all three germ layers derivatives. Nine out of 11 stem cell lines had normal karyotypes. Our results indicate that inner cell mass isolation is not mandatory for hESC derivation and that minimal manipulation of embryos can lead to high success rate.

Keywords

Pluripotent stem cells Huntington disease Cystic fibrosis Fragile X Myopathy 

Notes

Acknowledgements

We would like to thank Nicolas Becker, Nathalie Gardes and Jean Christophe Nicod for their technical help and the IVF team at the SIHCUS-CMCO. We also would like to thank Bruno Costes for his precious help with the STR genotyping and Xavier Nissan for the TLDA analysis. This work was supported by grants from the Association Française contre les Myopathies (AFM), the Agence Nationale pour la Recherche (ANR, hESCREEN), Medicen Paris Region (IngeCell network), the Centre National de la Recherche Scientifique (CNRS) and the Institut National de la Santé et de la Recherche Médicale (INSERM).

References

  1. Baart E. B.; van den Berg I.; Martini E.; Eussen H. J.; Fauser B. C.; Van Opstal D. FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn 27: 55–63; 2007.CrossRefPubMedGoogle Scholar
  2. Baker D. E.; Harrison N. J.; Maltby E.; Smith K.; Moore H. D.; Shaw P. J.; Heath P. R.; Holden H.; Andrews P. W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25: 207–215; 2007.CrossRefPubMedGoogle Scholar
  3. Chen A. E.; Egli D.; Niakan K.; Deng J.; Akutsu H.; Yamaki M.; Cowan C.; Fitz-Gerald C.; Zhang K.; Melton D. A.; Eggan K. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4: 103–106; 2009.CrossRefPubMedGoogle Scholar
  4. Cowan C. A.; Klimanskaya I.; McMahon J.; Atienza J.; Witmyer J.; Zucker J. P.; Wang S.; Morton C. C.; McMahon A. P.; Powers D.; Melton D. A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350: 1353–1356; 2004.CrossRefPubMedGoogle Scholar
  5. Evans M. J.; Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.Google Scholar
  6. Gardner D. K.; Lane M.; Stevens J.; Schlenker T.; Schoolcraft W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73: 1155–1158; 2000.CrossRefPubMedGoogle Scholar
  7. Hardarson T.; Caisander G.; Sjogren A.; Hanson C.; Hamberger L.; Lundin K. A morphological and chromosomal study of blastocysts developing from morphologically suboptimal human pre-embryos compared with control blastocysts. Hum Reprod 18: 399–407; 2003.CrossRefPubMedGoogle Scholar
  8. Heins N.; Englund M. C.; Sjoblom C.; Dahl U.; Tonning A.; Bergh C.; Lindahl A.; Hanson C.; Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22: 367–376; 2004.CrossRefPubMedGoogle Scholar
  9. Lerou P. H.; Yabuuchi A.; Huo H.; Takeuchi A.; Shea J.; Cimini T.; Ince T. A.; Ginsburg E.; Racowsky C.; Daley G. Q. Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26: 212–214; 2008.CrossRefPubMedGoogle Scholar
  10. Lins A. M.; Micka K. A. Sprecher C. J.; Taylor J. A.; Bacher J. W.; Rabbach D. R.; Bever R. A.; Creacy S. D.; Schumm W. J. Development and population study of an eight-locus short tandem repeat (STR) multiplex system. J Forensic Sci 43:1168–1180; 1998.Google Scholar
  11. Ludwig T. E.; Levenstein M. E.; Jones J. M.; Berggren W. T.; Mitchen E. R.; Frane J. L.; Crandall L. J.; Daigh C. A.; Conard K. R.; Piekarczyk M. S. et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24: 185–187; 2006.CrossRefPubMedGoogle Scholar
  12. Mateizel I.; De Temmerman N.; Ullmann U.; Cauffman G.; Sermon K.; Van de Velde H.; De Rycke M.; Degreef E.; Devroey P.; Liebaers I.; Van Steirteghem A. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21: 503–511; 2006.CrossRefPubMedGoogle Scholar
  13. Moutou C.; Gardes N.; Viville S. Multiplex PCR combining deltaF508 mutation and intragenic microsatellites of the CFTR gene for pre-implantation genetic diagnosis (PGD) of cystic fibrosis. Eur J Hum Genet 10: 231–238; 2002.CrossRefPubMedGoogle Scholar
  14. Reubinoff B. E.; Pera M. F.; Fong C. Y.; Trounson A.; Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18: 399–404; 2000.CrossRefPubMedGoogle Scholar
  15. Schatten G.; Smith J.; Navara C.; Park J. H.; Pedersen R. Culture of human embryonic stem cells. Nat Methods 2:455–463; 2005.Google Scholar
  16. Strom S.; Inzunza J.; Grinnemo K. H.; Holmberg K.; Matilainen E.; Stromberg A. M.; Blennow E.; Hovatta O. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22: 3051–3058; 2007.CrossRefPubMedGoogle Scholar
  17. Takahashi K.; Tanabe K.; Ohnuki M.; Narita M.; Ichisaka T.; Tomoda K.; Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872; 2007.CrossRefPubMedGoogle Scholar
  18. Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.CrossRefPubMedGoogle Scholar
  19. Turetsky T.; Aizenman E.; Gil Y.; Weinberg N.; Shufaro Y.; Revel A.; Laufer N.; Simon A.; Abeliovich D.; Reubinoff B. E. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23: 46–53; 2008.CrossRefPubMedGoogle Scholar
  20. Van de Velde H.; Cauffman G.; Tournaye H.; Devroey P.; Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23: 1742–1747; 2008.CrossRefPubMedGoogle Scholar
  21. Van Steirteghem A. C.; Nagy Z.; Joris H.; Liu J.; Staessen C.; Smitz J.; Wisanto A.; Devroey P. High fertilization and implantation rates after intracytoplasmic sperm injection [see comments]. Hum Reprod 8: 1061–1066; 1993.PubMedGoogle Scholar
  22. Wittemer C.; Ohl J.; Bettahar-Lebugle K.; Viville S.; Nisand I. A quantitative and morphological analysis of oocytes collected during 438 IVF cycles. J Assist Reprod Genet 17: 44–50; 2000.CrossRefPubMedGoogle Scholar
  23. Yu J.; Vodyanik M. A.; Smuga-Otto K.; Antosiewicz-Bourget J.; Frane J. L.; Tian S.; Nie J.; Jonsdottir G. A.; Ruotti V.; Stewart R. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920; 2007.CrossRefPubMedGoogle Scholar
  24. Zeng X.; Miura T.; Luo Y.; Bhattacharya B.; Condie B.; Chen J.; Ginis I.; Lyons I.; Mejido J.; Puri R. K. et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22: 292–312; 2004.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Philippe Tropel
    • 1
    • 2
    • 3
    • 4
    • 5
  • Johana Tournois
    • 5
  • Julien Côme
    • 5
  • Christine Varela
    • 5
  • Céline Moutou
    • 6
  • Pascal Fragner
    • 5
  • Michel Cailleret
    • 7
  • Yacine Laâbi
    • 5
  • Marc Peschanski
    • 7
  • Stéphane Viville
    • 1
    • 2
    • 3
    • 4
    • 6
  1. 1.IGBMCIllkirchFrance
  2. 2.Inserm, U964IllkirchFrance
  3. 3.CNRS, UMR7104IllkirchFrance
  4. 4.Université de StrasbourgStrasbourgFrance
  5. 5.CECS, I-STEMEvry 91030 cedexFrance
  6. 6.Faculté de MédecineCentre Hospitalier UniversitaireStrasbourgFrance
  7. 7.INSERM/UEVE 861, I-STEM, AFMEvry 91030 cedexFrance

Personalised recommendations