Derivation of three new human embryonic stem cell lines

  • Cara K. Bradley
  • Omar Chami
  • Teija T. Peura
  • Alexis Bosman
  • Biljana Dumevska
  • Uli Schmidt
  • Tomas Stojanov
Article

Abstract

Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines.

Keywords

Derivation Human Embryonic stem cells Pluripotent 

References

  1. Abbott A.; Dennis C.; Ledford H.; Smith K. The lure of stem-cell lines. Nature 442: 336–337; 2006 doi:10.1038/442336a.CrossRefGoogle Scholar
  2. Adewumi O.; Aflatoonian B.; hrlund-Richter L.; Amit M.; Andrews P. W.; Beighton G.; Bello P. A.; Benvenisty N.; Berry L. S.; Bevan S.; Blum B.; Brooking J.; Chen K. G.; Choo A. B.; Churchill G. A.; Corbel M.; Damjanov I.; Draper J. S.; Dvorak P.; Emanuelsson K.; Fleck R. A.; Ford A.; Gertow K.; Gertsenstein M.; Gokhale P. J.; Hamilton R. S.; Hampl A.; Healy L. E.; Hovatta O.; Hyllner J.; Imreh M. P.; Itskovitz-Eldor J.; Jackson J.; Johnson J. L.; Jones M.; Kee K.; King B. L.; Knowles B. B.; Lako M.; Lebrin F.; Mallon B. S.; Manning D.; Mayshar Y.; McKay R. D.; Michalska A. E.; Mikkola M.; Mileikovsky M.; Minger S. L.; Moore H. D.; Mummery C. L.; Nagy A.; Nakatsuji N.; O’Brien C. M.; Oh S. K.; Olsson C.; Otonkoski T.; Park K. Y.; Passier R.; Patel H.; Patel M.; Pedersen R.; Pera M. F.; Piekarczyk M. S.; Pera R. A.; Reubinoff B. E.; Robins A. J.; Rossant J.; Rugg-Gunn P.; Schulz T. C.; Semb H.; Sherrer E. S.; Siemen H.; Stacey G. N.; Stojkovic M.; Suemori H.; Szatkiewicz J.; Turetsky T.; Tuuri T.; van den B. S.; Vintersten K.; Vuoristo S.; Ward D.; Weaver T. A.; Young L. A.; Zhang W. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25: 803–816; 2007 doi:10.1038/nbt1318.CrossRefPubMedGoogle Scholar
  3. Doss M. X.; Koehler C. I.; Gissel C.; Hescheler J.; Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J. Cell Mol. Med. 8: 465–473; 2004 doi:10.1111/j.1582-4934.2004.tb00471.x.CrossRefPubMedGoogle Scholar
  4. Gerecht-Nir S.; Itskovitz-Eldor J. Human embryonic stem cells: a potential source for cellular therapy. Am. J. Transplant. 4(Suppl 6): 51–57; 2004 doi:10.1111/j.1600-6135.2004.0345.x.CrossRefPubMedGoogle Scholar
  5. Henman M.; Catt J. W.; Wood T.; Bowman M. C.; de Boer K. A.; Jansen R. P. Elective transfer of single fresh blastocysts and later transfer of cryostored blastocysts reduces the twin pregnancy rate and can improve the in vitro fertilization live birth rate in younger women. Fertil. Steril. 84: 1620–1627; 2005 doi:10.1016/j.fertnstert.2005.05.064.CrossRefPubMedGoogle Scholar
  6. Hoffman L. M.; Carpenter M. K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23: 699–708; 2005 doi:10.1038/nbt1102.CrossRefPubMedGoogle Scholar
  7. ISCF International Cell Banking Initiative (2008) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. http://www.stemcellforum.org/forum_initiatives/international_stem_cell_banking_initiative/iscbi_guidance.cfm. Cited 31 March 2009.
  8. Loring J. F.; Rao M. S. Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells 24: 145–150; 2006 doi:10.1634/stemcells.2005-0432.CrossRefPubMedGoogle Scholar
  9. Peura T.; Bosman A.; Chami O.; Jansen R. P.; Texlova K.; Stojanov T. Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10: 203–216; 2008 doi:10.1089/clo.2007.0062.CrossRefPubMedGoogle Scholar
  10. Peura T.; Schaft J.; Stojanov T. Derivation of human embryonic stem cell lines from vitrified human embryos. In Human Embryonic Stem Cell Protocols (Methods in Molecular Biology), Humana; 2009.Google Scholar
  11. Pouton C. W.; Haynes J. M. Embryonic stem cells as a source of models for drug discovery. Nat. Rev. Drug Discov. 6: 605–616; 2007 doi:10.1038/nrd2194.CrossRefPubMedGoogle Scholar
  12. Sartipy P.; Bjorquist P.; Strehl R.; Hyllner J. The application of human embryonic stem cell technologies to drug discovery. Drug Discov. Today 12: 688–699; 2007 doi:10.1016/j.drudis.2007.07.005.CrossRefPubMedGoogle Scholar
  13. Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998 doi:10.1126/science.282.5391.1145.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Cara K. Bradley
    • 1
  • Omar Chami
    • 1
  • Teija T. Peura
    • 1
    • 2
  • Alexis Bosman
    • 1
    • 3
  • Biljana Dumevska
    • 1
  • Uli Schmidt
    • 1
  • Tomas Stojanov
    • 1
  1. 1.Sydney IVF Stem CellsSydneyAustralia
  2. 2.Australian Stem Cell CentreUniversity of QueenslandBrisbaneAustralia
  3. 3.Faculty of MedicineUniversity of GenevaGenevaSwitzerland

Personalised recommendations