Advertisement

Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos

  • Adeleh Taei
  • Hamid Gourabi
  • Ali Seifinejad
  • Mehdi Totonchi
  • Ebrahim Shahbazi
  • Mojtaba Rezazadeh Valojerdi
  • Poopak Eftekhari
  • Leila Karimian
  • Hossein Baharvand
Article

Abstract

In this study, we focused on the derivation of human embryonic stem cell (hESC) from preimplantation genetic screening (PGS)-analyzed and preimplantation genetic diagnosis (PGD)-analyzed embryos. Out of 62 fresh PGD/PGS-analyzed embryos, 22 embryos reached the blastocyst stage. From 12 outgrowth blastocysts, we derived four hESC lines onto a feeder layer. Surprisingly, karyotype analysis showed that hESC lines derived from aneuploid embryos had diploid female karyotype. One hESC line was found to carry a balanced Robertsonian translocation. All the cell lines showed hESC markers and had the pluripotent ability to differentiate into derivatives of the three embryonic germ layers. The established lines had clonal propagation with 22–31% efficiency in the presence of ROCK inhibitor. These results further indicate that hESC lines can be derived from PGD/PGS-analyzed embryos that are destined to be discarded and can serve as an alternative source for normal euploid lines.

Keywords

Human embryonic stem cells Preimplantation genetic screening Robertsonian translocation 

Notes

Acknowledgments

The authors would like to express their thanks from the entire staff at the ART and PGD labs of the Royan Infertility Clinic. This study was funded by a grant provided from Royan Institute.

References

  1. Aasen T.; Raya A.; Barrero M. J.; Garreta E.; Consiglio A.; Gonzalez F.; Vassena R.; Bilic J.; Pekarik V.; Tiscornia G.; Edel M.; Boue S.; Belmonte J. C. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26: 1276–1284; 2008.CrossRefPubMedGoogle Scholar
  2. Baart E. B.; Martini E.; van den Berg I.; Macklon N. S.; Galjaard R. J.; Fauser B. C.; Van Opstal D. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum. Reprod. 21: 223–233; 2006.CrossRefPubMedGoogle Scholar
  3. Baharvand H.; Ashtiani S. K.; Taee A.; Massumi M.; Valojerdi M. R.; Yazdi P. E.; Moradi S. Z.; Farrokhi A. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev. Growth Differ. 48: 117–128; 2006.CrossRefPubMedGoogle Scholar
  4. Cortes J. L.; Sanchez L.; Catalina P.; Cobo F.; Bueno C.; Martinez-Ramirez A.; Barroso A.; Cabrera C.; Ligero G.; Montes R.; Rubio R.; Nieto A.; Menendez P. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Stem Cells Dev. 17: 255–267; 2008.CrossRefPubMedGoogle Scholar
  5. Cortes J. L.; Sanchez L.; Ligero G.; Gutierrez-Aranda I.; Catalina P.; Elosua C.; Leone P. E.; Montes R.; Bueno C.; Ramos-Mejia V.; Maleno I.; Garcia-Perez J. L.; Menendez P. Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Hum. Reprod. 24: 1844–1851; 2009.CrossRefPubMedGoogle Scholar
  6. Coulam C. B.; Jeyendran R. S.; Fiddler M.; Pergament E. Discordance among blastomeres renders preimplantation genetic diagnosis for aneuploidy ineffective. J. Assist. Reprod. Genet. 24: 37–41; 2007.CrossRefPubMedGoogle Scholar
  7. Draper J. S.; Smith K.; Gokhale P.; Moore H. D.; Maltby E.; Johnson J.; Meisner L.; Zwaka T. P.; Thomson J. A.; Andrews P. W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22: 53–54; 2004.CrossRefPubMedGoogle Scholar
  8. Eiges R.; Urbach A.; Malcov M.; Frumkin T.; Schwartz T.; Amit A.; Yaron Y.; Eden A.; Yanuka O.; Benvenisty N.; Ben-Yosef D. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1: 568–577; 2007.CrossRefPubMedGoogle Scholar
  9. Gardner D. K.; Lane M. Towards a single embryo transfer. Reprod. Biomed. Online 6: 470–481; 2003.PubMedGoogle Scholar
  10. Heins N.; Englund M. C.; Sjoblom C.; Dahl U.; Tonning A.; Bergh C.; Lindahl A.; Hanson C.; Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22: 367–376; 2004.CrossRefPubMedGoogle Scholar
  11. Hogan B.; Constantini F.; Lacy E. Manipulating the mouse embryo: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994.Google Scholar
  12. Hyun I.; Hochedlinger K.; Jaenisch R.; Yamanaka S. New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1: 367–368; 2007.CrossRefPubMedGoogle Scholar
  13. Kahraman S.; Benkhalifa M.; Donmez E.; Biricik A.; Sertyel S.; Findikli N.; Berkil H. The results of aneuploidy screening in 276 couples undergoing assisted reproductive techniques. Prenat Diagn 24: 307–311; 2004.CrossRefPubMedGoogle Scholar
  14. Lavon N.; Narwani K.; Golan-Lev T.; Buehler N.; Hill D.; Benvenisty N. Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells 26: 1874–1882; 2008.CrossRefPubMedGoogle Scholar
  15. Lerou P. H.; Yabuuchi A.; Huo H.; Takeuchi A.; Shea J.; Cimini T.; Ince T. A.; Ginsburg E.; Racowsky C.; Daley G. Q. Human embryonic stem cell derivation from poor-quality embryos. Nat. Biotechnol. 26: 212–214; 2008.CrossRefPubMedGoogle Scholar
  16. Li M.; DeUgarte C. M.; Surrey M.; Danzer H.; DeCherney A.; Hill D. L. Fluorescence in situ hybridization reanalysis of day-6 human blastocysts diagnosed with aneuploidy on day 3. Fertil. Steril. 84: 1395–1400; 2005.CrossRefPubMedGoogle Scholar
  17. Li W.; Wei W.; Zhu S.; Zhu J.; Shi Y.; Lin T.; Hao E.; Hayek A.; Deng H.; Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4: 16–19; 2009.CrossRefPubMedGoogle Scholar
  18. Liu W.; Yin Y.; Long X.; Luo Y.; Jiang Y.; Zhang W.; Du H.; Li S.; Zheng Y.; Li Q.; Chen X.; Liao B.; Xiao G.; Wang W.; Sun X. Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J. Genet. Genomics 36: 229–239; 2009.CrossRefPubMedGoogle Scholar
  19. Maherali N.; Ahfeldt T.; Rigamonti A.; Utikal J.; Cowan C.; Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3: 340–345; 2008.CrossRefPubMedGoogle Scholar
  20. Mollamohammadi S.; Taei A.; Pakzad M.; Totonchi M.; Seifinejad A.; Masoudi N.; Baharvand H. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum. Reprod. 24: 2468–2476; 2009.CrossRefPubMedGoogle Scholar
  21. Munne S.; Marquez C.; Magli C.; Morton P.; Morrison L. Scoring criteria for preimplantation genetic diagnosis of numerical abnormalities for chromosomes X, Y, 13, 16, 18 and 21. Mol. Hum. Reprod. 4: 863–870; 1998.CrossRefPubMedGoogle Scholar
  22. Munne S.; Velilla E.; Colls P.; Garcia Bermudez M.; Vemuri M. C.; Steuerwald N.; Garrisi J.; Cohen J. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil. Steril. 84: 1328–1334; 2005.CrossRefPubMedGoogle Scholar
  23. Osafune K.; Caron L.; Borowiak M.; Martinez R. J.; Fitz-Gerald C. S.; Sato Y.; Cowan C. A.; Chien K. R.; Melton D. A. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26: 313–315; 2008.CrossRefPubMedGoogle Scholar
  24. Peura T.; Bosman A.; Chami O.; Jansen R. P.; Texlova K.; Stojanov T. Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10: 203–216; 2008.CrossRefPubMedGoogle Scholar
  25. Pickering S. J.; Minger S. L.; Patel M.; Taylor H.; Black C.; Burns C. J.; Ekonomou A.; Braude P. R. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod. Biomed. Online 10: 390–397; 2005.PubMedCrossRefGoogle Scholar
  26. Reubinoff B. E.; Pera M. F.; Vajta G.; Trounson A. O. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16: 2187–2194; 2001.CrossRefPubMedGoogle Scholar
  27. Sun X.; Long X.; Yin Y.; Jiang Y.; Chen X.; Liu W.; Zhang W.; Du H.; Li S.; Zheng Y.; Kong S.; Pang Q.; Shi Y.; Huang Y.; Huang S.; Liao B.; Xiao G.; Wang W. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum. Reprod. 23: 2185–2193; 2008.CrossRefPubMedGoogle Scholar
  28. Takahashi K.; Tanabe K.; Ohnuki M.; Narita M.; Ichisaka T.; Tomoda K.; Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872; 2007.CrossRefPubMedGoogle Scholar
  29. Takahashi K.; Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676; 2006.CrossRefPubMedGoogle Scholar
  30. Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.CrossRefPubMedGoogle Scholar
  31. Totonchi M.; Taei A.; Seifinejad A.; Tabebordbar M.; Rassouli H.; Farrokhi A.; Gourabi H.; Aghdami N.; Salekdeh G. H.; Baharvand H. Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. Int. J. Dev. Biol. (in press); 2010.Google Scholar
  32. Velilla E.; Escudero T.; Munne S. Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod. Biomed. Online 4: 210–217; 2002.PubMedCrossRefGoogle Scholar
  33. Verlinsky Y.; Strelchenko N.; Kukharenko V.; Rechitsky S.; Verlinsky O.; Galat V.; Kuliev A. Human embryonic stem cell lines with genetic disorders. Reprod. Biomed. Online 10: 105–110; 2005.PubMedCrossRefGoogle Scholar
  34. Yu J.; Vodyanik M. A.; Smuga-Otto K.; Antosiewicz-Bourget J.; Frane J. L.; Tian S.; Nie J.; Jonsdottir G. A.; Ruotti V.; Stewart R.; Slukvin I. I.; Thomson J. A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920; 2007.CrossRefPubMedGoogle Scholar
  35. Zhang X.; Stojkovic P.; Przyborski S.; Cooke M.; Armstrong L.; Lako M.; Stojkovic M. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24: 2669–2676; 2006.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Adeleh Taei
    • 1
  • Hamid Gourabi
    • 2
  • Ali Seifinejad
    • 1
  • Mehdi Totonchi
    • 2
  • Ebrahim Shahbazi
    • 1
  • Mojtaba Rezazadeh Valojerdi
    • 3
  • Poopak Eftekhari
    • 3
  • Leila Karimian
    • 3
  • Hossein Baharvand
    • 1
    • 4
  1. 1.Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran
  2. 2.Department of Genetics, Royan Institute for Reproductive BiomedicineACECRTehranIran
  3. 3.Department of Embryology, Royan Institute for Reproductive BiomedicineACECRTehranIran
  4. 4.Department of Developmental Biology, University of Science and CultureACECRTehranIran

Personalised recommendations