Parasiticidal activity of human α-defensin-5 against Toxoplasma gondii

  • Tetsuya Tanaka
  • Md. Morshedur Rahman
  • Banzragch Battur
  • Damdinsuren Boldbaatar
  • Min Liao
  • Rika Umemiya-Shirafuji
  • Xuenan Xuan
  • Kozo Fujisaki
Article

Abstract

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.

Keywords

Human α-defensin-5 Toxoplasma gondii Aggregation Parasiticidal activity 

Notes

Acknowledgments

This work was supported by the Bio-oriented Technology Research Advancement Institution (BRAIN) and Grants-in Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS).

References

  1. Aley S. B.; Zimmerman M.; Hetsko M.; Selsted M. E.; Gillin F. D. Killing of Giardia lamblia by cryptins and cationic neutrophil peptides. Infect. Immun. 62: 5397–5403; 1994.PubMedGoogle Scholar
  2. Ayabe T.; Satchell D. P.; Wilson C. L.; Parks W. C.; Selsted M. E.; Ouellette A. J. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1: 113–118; 2000.CrossRefPubMedGoogle Scholar
  3. Boman H. G. Peptide antibodies and their role in innate immunity. Annu. Rev. Immunol. 13: 61–92; 1995.CrossRefPubMedGoogle Scholar
  4. Brogden K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238–250; 2005.CrossRefPubMedGoogle Scholar
  5. Brown K. L.; Hancock R. E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24–30; 2006.CrossRefPubMedGoogle Scholar
  6. Chen H.; Xu Z.; Peng L.; Fang X.; Yin X.; Xu N.; Cen P. Recent advances in the research and development of human defensins. Peptides 27: 931–940; 2006.CrossRefPubMedGoogle Scholar
  7. Duits L. A.; Ravensbergen B.; Rademaker M.; Hiemstra P. S.; Nibbering P. H. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106: 517–525; 2002.CrossRefPubMedGoogle Scholar
  8. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710–720; 2003.CrossRefPubMedGoogle Scholar
  9. Hancock R. E.; Sahl H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551–1557; 2006.CrossRefPubMedGoogle Scholar
  10. Hoffmann J. A.; Kafatos F. C.; Janeway C. A.; Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science 284: 1313–1318; 1999.CrossRefPubMedGoogle Scholar
  11. Huang L. C.; Redfern R. L.; Narayanan S.; Reins R. Y.; McDermott A. M. In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob. Agents Chemother. 51: 3853–3860; 2007.CrossRefPubMedGoogle Scholar
  12. Ihi T.; Nakazato M.; Mukae H.; Matsukura S. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin. Infect. Dis. 25: 1134–1140; 1997.CrossRefPubMedGoogle Scholar
  13. Jones D. E.; Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267: 23216–23225; 1992.PubMedGoogle Scholar
  14. Lai Y.; Gallo R. L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30: 131–141; 2009.CrossRefPubMedGoogle Scholar
  15. Lehrer R. I.; Ganz T. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11: 23–27; 1999.CrossRefPubMedGoogle Scholar
  16. Liévin-Le Moal V.; Servin A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19: 315–337; 2006.CrossRefPubMedGoogle Scholar
  17. McGwire B. S.; Olson C. L.; Tack B. F.; Engman D. M. Killing of African trypanosomes by antimicrobial peptides. J. Infect. Dis. 188: 146–152; 2003.CrossRefPubMedGoogle Scholar
  18. Morrison G.; Morrison G.; Kilanowski F.; Davidson D.; Dorin J. Characterization of the mouse beta defensins 1, Defb1, mutant mouse model. Infect. Immun. 70: 3053–3060; 2002.CrossRefPubMedGoogle Scholar
  19. Moser C.; Weiner D. J.; Lysenko E.; Bals R.; Weiser J. N.; Wilson J. M. beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70: 3068–3072; 2002.CrossRefPubMedGoogle Scholar
  20. Panyutich A. V.; Panyutich E. A.; Krapivin V. A.; Baturevich E. A.; Ganz T. Plasma defensins concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. 122: 202–207; 1993.PubMedGoogle Scholar
  21. Powers J. P.; Hancock R. E. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681–1691; 2003.CrossRefPubMedGoogle Scholar
  22. Salzman N. H.; Ghosh D.; Huttner K. M.; Paterson Y.; Bevins C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522–526; 2003.CrossRefPubMedGoogle Scholar
  23. Striepen B.; He C. Y.; Matrajt M.; Soldati D.; Roos D. S. Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol. Biochem. Parasitol. 1: 325–338; 1998.CrossRefGoogle Scholar
  24. Wilson C. L.; Ouellette A. J.; Satchell D. P.; Ayabe T.; López-Boado Y. S.; Stratman J. L.; Hultgren S. J.; Matrisian L. M.; Parks W. C. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117; 1999.CrossRefPubMedGoogle Scholar
  25. Wimley W. C.; Selsted M. E.; White S. H. Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci. 3: 1362–1373; 1994.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Tetsuya Tanaka
    • 1
  • Md. Morshedur Rahman
    • 1
  • Banzragch Battur
    • 1
  • Damdinsuren Boldbaatar
    • 1
  • Min Liao
    • 1
  • Rika Umemiya-Shirafuji
    • 1
  • Xuenan Xuan
    • 2
  • Kozo Fujisaki
    • 1
  1. 1.Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Science, Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  2. 2.National Research Center for Protozoan DiseasesObihiro University of Agriculture and Veterinary MedicineObihiroJapan

Personalised recommendations