Advertisement

Parasiticidal activity of human α-defensin-5 against Toxoplasma gondii

  • Tetsuya Tanaka
  • Md. Morshedur Rahman
  • Banzragch Battur
  • Damdinsuren Boldbaatar
  • Min Liao
  • Rika Umemiya-Shirafuji
  • Xuenan Xuan
  • Kozo FujisakiEmail author
Article

Abstract

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.

Keywords

Human α-defensin-5 Toxoplasma gondii Aggregation Parasiticidal activity 

Notes

Acknowledgments

This work was supported by the Bio-oriented Technology Research Advancement Institution (BRAIN) and Grants-in Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS).

References

  1. Aley S. B.; Zimmerman M.; Hetsko M.; Selsted M. E.; Gillin F. D. Killing of Giardia lamblia by cryptins and cationic neutrophil peptides. Infect. Immun. 62: 5397–5403; 1994.PubMedGoogle Scholar
  2. Ayabe T.; Satchell D. P.; Wilson C. L.; Parks W. C.; Selsted M. E.; Ouellette A. J. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1: 113–118; 2000.CrossRefPubMedGoogle Scholar
  3. Boman H. G. Peptide antibodies and their role in innate immunity. Annu. Rev. Immunol. 13: 61–92; 1995.CrossRefPubMedGoogle Scholar
  4. Brogden K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238–250; 2005.CrossRefPubMedGoogle Scholar
  5. Brown K. L.; Hancock R. E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24–30; 2006.CrossRefPubMedGoogle Scholar
  6. Chen H.; Xu Z.; Peng L.; Fang X.; Yin X.; Xu N.; Cen P. Recent advances in the research and development of human defensins. Peptides 27: 931–940; 2006.CrossRefPubMedGoogle Scholar
  7. Duits L. A.; Ravensbergen B.; Rademaker M.; Hiemstra P. S.; Nibbering P. H. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106: 517–525; 2002.CrossRefPubMedGoogle Scholar
  8. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710–720; 2003.CrossRefPubMedGoogle Scholar
  9. Hancock R. E.; Sahl H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551–1557; 2006.CrossRefPubMedGoogle Scholar
  10. Hoffmann J. A.; Kafatos F. C.; Janeway C. A.; Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science 284: 1313–1318; 1999.CrossRefPubMedGoogle Scholar
  11. Huang L. C.; Redfern R. L.; Narayanan S.; Reins R. Y.; McDermott A. M. In vitro activity of human beta-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid. Antimicrob. Agents Chemother. 51: 3853–3860; 2007.CrossRefPubMedGoogle Scholar
  12. Ihi T.; Nakazato M.; Mukae H.; Matsukura S. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin. Infect. Dis. 25: 1134–1140; 1997.CrossRefPubMedGoogle Scholar
  13. Jones D. E.; Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267: 23216–23225; 1992.PubMedGoogle Scholar
  14. Lai Y.; Gallo R. L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30: 131–141; 2009.CrossRefPubMedGoogle Scholar
  15. Lehrer R. I.; Ganz T. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11: 23–27; 1999.CrossRefPubMedGoogle Scholar
  16. Liévin-Le Moal V.; Servin A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19: 315–337; 2006.CrossRefPubMedGoogle Scholar
  17. McGwire B. S.; Olson C. L.; Tack B. F.; Engman D. M. Killing of African trypanosomes by antimicrobial peptides. J. Infect. Dis. 188: 146–152; 2003.CrossRefPubMedGoogle Scholar
  18. Morrison G.; Morrison G.; Kilanowski F.; Davidson D.; Dorin J. Characterization of the mouse beta defensins 1, Defb1, mutant mouse model. Infect. Immun. 70: 3053–3060; 2002.CrossRefPubMedGoogle Scholar
  19. Moser C.; Weiner D. J.; Lysenko E.; Bals R.; Weiser J. N.; Wilson J. M. beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70: 3068–3072; 2002.CrossRefPubMedGoogle Scholar
  20. Panyutich A. V.; Panyutich E. A.; Krapivin V. A.; Baturevich E. A.; Ganz T. Plasma defensins concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. 122: 202–207; 1993.PubMedGoogle Scholar
  21. Powers J. P.; Hancock R. E. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681–1691; 2003.CrossRefPubMedGoogle Scholar
  22. Salzman N. H.; Ghosh D.; Huttner K. M.; Paterson Y.; Bevins C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522–526; 2003.CrossRefPubMedGoogle Scholar
  23. Striepen B.; He C. Y.; Matrajt M.; Soldati D.; Roos D. S. Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol. Biochem. Parasitol. 1: 325–338; 1998.CrossRefGoogle Scholar
  24. Wilson C. L.; Ouellette A. J.; Satchell D. P.; Ayabe T.; López-Boado Y. S.; Stratman J. L.; Hultgren S. J.; Matrisian L. M.; Parks W. C. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117; 1999.CrossRefPubMedGoogle Scholar
  25. Wimley W. C.; Selsted M. E.; White S. H. Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci. 3: 1362–1373; 1994.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Tetsuya Tanaka
    • 1
  • Md. Morshedur Rahman
    • 1
  • Banzragch Battur
    • 1
  • Damdinsuren Boldbaatar
    • 1
  • Min Liao
    • 1
  • Rika Umemiya-Shirafuji
    • 1
  • Xuenan Xuan
    • 2
  • Kozo Fujisaki
    • 1
    Email author
  1. 1.Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Science, Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  2. 2.National Research Center for Protozoan DiseasesObihiro University of Agriculture and Veterinary MedicineObihiroJapan

Personalised recommendations