In vitro culture of precision-cut testicular tissue as a novel tool for the study of responses to LH

  • Andy Michael Laughlin
  • Thomas H. WelshJr.
  • Charles C. Love
  • Dickson D. Varner
  • Alan R. Parrish
  • David W. Forrest
  • Nancy H. Ing


In vitro culture systems are valuable tools for investigating reproductive mechanisms in the testis. Here, we report the use of the precision-cut in vitro system using equine testicular slices. Testes were collected from immature light breed stallions (n = 3) and cut into slices (mean slice weight = 13.85 ± 0.20 mg; mean slice thickness = 515.00 ± 2.33 µm) using the precision-cut tissue-slicing method. Four tissue slices were placed on a grid floating on medium in individual vials. After a 1-h preincubation, they were exposed to medium containing ovine luteinizing hormone (oLH) at concentrations of 0, 5, 50, and 500 ng/ml for 6 h at 32°C. Viability of the tissue was maintained based on histological integrity and lack of appreciable lactate dehydrogenase in the medium. The production and release of testosterone (T) and estradiol-17β (E2) into the medium was measured following in vitro culture. The addition of oLH increased T and E2 at least 400% and 120%, respectively, over the 0-ng oLH control cultures. Testicular gene expression was assessed with in situ hybridization methodology for steroidogenic acute regulatory protein (StAR protein), phosphodiesterase 3B (PDE3B), and outer dense fiber of sperm tails 2 (ODF2) mRNAs. In situ hybridization revealed an oLH concentration-dependent increase in the concentration of StAR protein mRNA in Leydig cells. No differences were observed for the expression of PDE3B or ODF2 genes in seminiferous tubules among treatment groups as expected. These results demonstrate the value of in vitro culture of the precision-cut tissue slices for studies of the regulation of steroidogenesis and gene expression in the stallion testes.


Organ culture system Stallion Testis StAR protein Luteinizing hormone 



Financial support for this project was provided by the H. Patricia Link Endowment Equine Research Fund, Texas A&M University. The authors are grateful for the gifts of plasmids containing cDNAs for ODF2 from Dr. Frans van der Hoorn (University of Calgary, Alberta, Canada) and PDE3B from Dr. Vincent Manganiello (National Institutes of Health, Bethesda, MD). In addition, the authors would like to thank Linda Love and Beltex, Inc. for assistance in obtaining the testis tissues, Dr. Robert Burghardt (Texas A&M University, College Station, TX) for providing microscopy facilities and Cindy Balog Alvarez, Pat Chen and Dr. John Nelson for technical assistance.


  1. Azri-Meehan S.; Mata H. P.; Gandolfi A. J.; Brendel K. The hepatotoxicity of chloroform in precision-cut rat liver slices. Toxicology 73: 239–250; 1992.CrossRefPubMedGoogle Scholar
  2. Boitani C.; Politi M. G.; Menna T. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol. Reprod. 48: 761–767; 1993.CrossRefPubMedGoogle Scholar
  3. Catania J. M.; Parrish A. R.; Kirkpatrick D. S.; Chitkara M.; Bowden G. T.; Henderson C. J.; Wolf C. R.; Clark A. J.; Brendel A. J.; Fisher R. L.; Gandolfi A. J. Precision-cut tissue slices from transgenic mice as an in vitro toxicology system. Toxicol. In Vitro 17: 201–205; 2003.CrossRefPubMedGoogle Scholar
  4. Clark B. J.; Wells J.; King S. R.; Stocco D. M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269(45): 28314–28322; 1994.PubMedGoogle Scholar
  5. Decker T.; Lohmann-Matthes M. L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 15: 61–69; 1988.CrossRefGoogle Scholar
  6. Donnelly C. L.; Staub C.; Varner D.; Blanchard T.; Johnson L.; Forrest D. W. The effects of growth factor on testicular germ cell apoptosis in the stallion. J. Equine Vet. Sci. 27(5): 212–216; 2007.CrossRefGoogle Scholar
  7. Eisenhauer K. M.; Roser J. F. Effects of lipoprotein, equine luteinizing hormone, equine follicle-stimulating hormone, and equine prolactin on equine testicular steroidogenesis in vitro. J. Androl. 16: 18–27; 1995.PubMedGoogle Scholar
  8. Hess M. F.; Roser J. F. A comparison of the effects of equine luteinizing hormone (eLH), equine growth hormone (eGH) and human recombinant insulin-like growth factor (hrIGF-I) on steroid production in cultured equine Leydig cells during sexual maturation. Anim. Reprod. Sci. 89: 7–19; 2005.CrossRefPubMedGoogle Scholar
  9. Ing N. H.; Laughlin A. M.; Varner D. D.; Welsh T. H.; Jr F. D. W.; Blanchard T. L.; Johnson L. Gene expression in the spermatogenically inactive “dark” and maturing “light” testicular tissues of the prepubertal colt. J. Androl. 25: 535–544; 2004.PubMedGoogle Scholar
  10. Ing N. H.; Spencer T. E.; Bazer F. W. Estrogen enhances endometrial estrogen receptor gene expression by a posttranscriptional mechanism in the ovariectomized ewe. Biol. Reprod. 54: 591–599; 1996.CrossRefPubMedGoogle Scholar
  11. Ing N. H.; Tornesi M. B. Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol. Reprod. 56(5): 1205–1215; 1997.CrossRefPubMedGoogle Scholar
  12. Luo L.; Chen H.; Stocco M.; Zirkin B. R. Leydig cell protein synthesis and steroidogenesis in response to acute stimulation by luteinizing hormone in rats. Biol. Reprod. 59: 263–270; 1998.CrossRefPubMedGoogle Scholar
  13. Manna P. R.; Huhtanieme I. T.; Stocco D. M. Detection of hCG responsive expression of the steroidogenic acute regulatory protein in mouse Leydig cells. Biol. Proced. Online 6(1): 83–93; 2004.CrossRefPubMedGoogle Scholar
  14. Manna P. R.; Stocco D. M. Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5: 93–108; 2005.CrossRefPubMedGoogle Scholar
  15. Orth J. M.; McGuinness M. P.; Qui J.; Jester W. F.; Li L. H. Use of in vitro systems to study male germ cell development in neonatal rats. Theriogenology 49: 431–439; 1998.CrossRefPubMedGoogle Scholar
  16. Parks J. E.; Lee D. R.; Huang S.; Kaproth M. T. Prospects for spermatogenesis in vitro. Theriogenology 59: 73–86; 2003.CrossRefPubMedGoogle Scholar
  17. Parrish A. R.; Catania J. M.; Orozco J.; Gandolfi A. J. Chemically induced oxidative stress disrupts the E-cadherin/catenin cell adhesion complex. Toxicol. Sci. 51: 80–86; 1999a.CrossRefGoogle Scholar
  18. Parrish A. R.; Gandolfi A. J.; Brendel K. Minireview precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 57(21): 1887–1900; 1995.CrossRefPubMedGoogle Scholar
  19. Parrish A. R.; Sallam K.; Nyman D. W.; Orozco J.; Cress A. E.; Dalkin B. L.; Nagle R. B.; Gandolfi A. J. Culturing precision-cut human prostate slices as an in vitro model of prostate pathobiology. Cell Biol. Toxicol. 18: 205–218; 2002.CrossRefPubMedGoogle Scholar
  20. Parrish A. R.; Zheng X. H.; Turney K. D.; Younis H. S.; Gandolfi A. J. Enhanced transcription factor DNA binding and gene expression induced by arsenite or arsenate in renal slices. Toxicol. Sci. 50: 98–105; 1999b.CrossRefGoogle Scholar
  21. Pollack S. E.; Furth E. E.; Kallen C. B.; Arakane F.; Kiriakidou M.; Kozarsky K. F.; Strauss J. F. Localization of the steroidogenic acute regulatory protein in human tissues. J. Clin. Endocrinol. Metab. 82: 4243–4251; 1997.CrossRefPubMedGoogle Scholar
  22. Schmelz M.; Schmid V. J.; Parrish A. R. Selective disruption of cadherin/catenin complexes by oxidative stress in precision-cut mouse liver slices. Toxicol. Sci. 61: 389–394; 2001.CrossRefPubMedGoogle Scholar
  23. Smith P. F.; Gandolfi A. J.; Krumdieck C. L.; Putnam C. W.; Zukoski C. F.; Davis W. M.; Brendel K. Dynamic organ culture of precision liver slices for in vitro toxicology. Life Sci. 36: 1367–1375; 1985.CrossRefPubMedGoogle Scholar
  24. Staub C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J. Androl. 22(6): 911–926; 2001.PubMedGoogle Scholar
  25. Steinberger A.; Klinefelter G. Sensitivity of Sertoli and Leydig cells to xenobiotics in vitro models. Reprod. Toxicol. 7: 23–37; 1993.CrossRefPubMedGoogle Scholar
  26. Stocco D. M.; Clark B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17: 221–243; 1996.PubMedGoogle Scholar
  27. Webber K. M.; Stocco D. M.; Casadesus G.; Bowen R. L.; Atwood C. S.; Previll L. A.; Harris P. L. R.; Zhu X.; Perry G.; Smith M. A. Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Mol. Neurodegeneration 1: 14; 2006.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  • Andy Michael Laughlin
    • 1
  • Thomas H. WelshJr.
    • 1
  • Charles C. Love
    • 2
  • Dickson D. Varner
    • 2
  • Alan R. Parrish
    • 3
  • David W. Forrest
    • 1
  • Nancy H. Ing
    • 1
    • 4
  1. 1.Department of Animal Science, College of Agriculture and Life SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationUSA
  3. 3.Department of Systems Biology and Translational Medicine, College of MedicineTexas A&M Health Science CenterCollege StationUSA
  4. 4.College StationUSA

Personalised recommendations