In Vitro Cellular & Developmental Biology - Animal

, Volume 45, Issue 8, pp 451–459 | Cite as

Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization

Article

Abstract

Marrow culture from mice has been reported to be overgrown by non-mesenchymal cells. In almost all protocols for isolation of murine mesenchymal stem cells (MSCs), high density culture systems have been employed. Since MSCs are colonogenic cells, the initiating cell seeding density may have significant impact on their cultures. This subject was explored in this study. For this purpose, the bone marrow cells from NMRI mice were plated at 2.5 × 106 cells/cm2 and upon confluency were reseeded as either low density (50 cells/cm2) or high density (8 × 104 cells/cm2) cultures. The cells were expanded through an additional subculture and the passage 2 cells as a product of two culture systems were statistically compared with respect to their surface antigen profiles and osteogenic culture mineralization. While low density culture grew with multiple colony formation, there were no distinct colonies in high density cultures. In contrast to high density cultures, passage 2 cells from low density system possessed typical homogenous fibroblastic morphology. Some cells from high density system but not the low density cultures expressed hematopoietic and endothelial cell markers including CD135, CD34, CD31, and Vcam surface antigens. Furthermore, osteogenic cultures from low density system displayed significantly more mineralization than those from high density system. Taken together, it seems that low density culture system resulted in more purified MSC culture than its counterpart as high density culture system.

Keywords

Murine mesenchymal stem cells Cell seeding density Culture mineralization Surface antigens 

References

  1. Abdallah B. M.; Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene. Ther. 15: 109–116; 2007.PubMedCrossRefGoogle Scholar
  2. Baddoo M.; Hill K.; Wilkinson R.; Gaupp D.; Hughes C.; Kopen G. C.; Phinney D. G. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cellul. Biochem. 89: 1235–1249; 2003.CrossRefGoogle Scholar
  3. Baksh D.; Song L.; Tuan R. S. Adult mesenchymal stem cells. Characterization, differentiation and application in cell therapy. Mol. Med. 8: 301–136; 2004.Google Scholar
  4. Baldwin H. S.; Shen H. M.; Yan H. C.; DeLisser H. M.; Chung A.; Mickanin C.; Trask T.; Kirschbaum N. E.; Newman P. J.; Albelda S. M.; et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120: 2539–2553; 1994.PubMedGoogle Scholar
  5. Barry F. P. Mesenchymal stem cell therapy in joint disease. Novartis Found. Symp. 249: 86–96; 2003.PubMedCrossRefGoogle Scholar
  6. Bianco P.; Riminucci M.; Gronthos S.; Robey P. G. Bone marrow stromal stem cells. Nature, biology, and potential applications. Stem. Cells 19: 180–192; 2001.PubMedCrossRefGoogle Scholar
  7. Chapel A.; Bertho J. M.; Bensidhoum M.; Fouillard L.; Young R. G.; Frick J.; Demarquay C.; Cuvelier F.; Mathieu E.; Trompier F.; Dudoignon N.; Germain C.; Mazurier C.; Aigueperse J.; Borneman J.; Gorin N. C.; Gourmelon P.; Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med. 5: 1028–1038; 2003.PubMedCrossRefGoogle Scholar
  8. Devine S. M.; Bartholomew A. M.; Mahmud N.; Nelson M.; Patil S.; Hardy W.; Sturgeon C.; Hewett T.; Chung T.; Stock W.; Sher D.; Weissman S.; Ferrer K.; Mosca J.; Deans R.; Moseley A.; Hoffman R. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol. 29: 244–255; 2001.PubMedCrossRefGoogle Scholar
  9. Eslaminejad M. B.; Mirzadeh H.; Mohamadi Y.; Aghbibi N. Bone differentiation of the marrow-derived mesenchymal stem cells using β-tricalcium phosphate/alginate/gelatin hybrid scaffolds. J. Tiss. Eng. Reg. Med. 6: 417; 424; 2007.CrossRefGoogle Scholar
  10. Eslaminejad M. B.; Nadri S.; Hosseini R. H. Expression of Thy 1.2 surface antigen increases significantly during the murine MSCs cultivation period. Dev. Growth Differ. 49: 351–364; 2007.PubMedCrossRefGoogle Scholar
  11. Eslaminejad M. B.; Nikmahzar A.; Taghiyar L.; Nadri S.; Massumi M. Murine mesenchymal stem cells isolated by low density primary culture system. Dev. Growth Differ. 48: 361–370; 2006.PubMedCrossRefGoogle Scholar
  12. Friedenstein A. J.; Chailakhyan R. K.; Latsinik N. V.; Panansyuk A. F.; Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hematopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17: 331–340; 1974b.PubMedCrossRefGoogle Scholar
  13. Friedenstein A. J.; Deriglasova U. F.; Kulagina N. N.; Panasuk A. F.; Rudakowa S. F.; Luriá E. A.; Ruadkow I. A. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay methods. Exp. Hematol. 2: 83–92; 1974a.PubMedGoogle Scholar
  14. Grinnemo K. H.; Månsson A.; Dellgren G.; Klingberg D.; Wardell E.; Drvota V.; Tammik C.; Holgersson J.; Ringdén O.; Sylvén C.; Le Blanc K. Xenoreactivity and engraftment of human mesenchymal stem cells transplantation into infarcted rat myocardium. J. Thorac. Cardiovasc. Surg. 127: 1293–1300; 2004.PubMedCrossRefGoogle Scholar
  15. Horwitz E. M.; Gordon P. L.; Koo W. K.; Marx J. C.; Neel M. D.; McNall R. Y.; Muul L.; Hofmann T. Isolated allogenic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. U.S.A. 99: 8932–8937; 2002.PubMedCrossRefGoogle Scholar
  16. Ikuta K.; Weissman I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. U.S.A. 89: 1502–1506; 1992.PubMedCrossRefGoogle Scholar
  17. Jessop H. L.; Noble B. S.; Cryer A. The differentiation of a potential mesenchymal stem cells population within ovine bone marrow. Biochem. Soc. Trans. 22: 248; 1994.Google Scholar
  18. Kadiyala S.; Young R. G.; Thiede M. A.; Bruder S. P. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6: 125–134; 1997.PubMedCrossRefGoogle Scholar
  19. Kinashi T.; St Pierre Y.; Springer T. A. Expression of glycophosphatidylinositol-anchored and -non-anchored isoforms of vascular cell adhesion molecule 1 in murine stromal and endothelial cells. J. Leukoc. Biol. 57: 168–173; 1995.PubMedGoogle Scholar
  20. Koe O. N.; Gerson S. L.; Cooper B. W.; Dyhonse S. M.; Haynesworth S. E.; Caplan A. I.; Lazarus H. M. Rapid hematopoietic recovery after confusion of autologous-blood stem cells in advanced breast cancer patients receiving high dose chemotherapy. J. Clin. Oncol. 18: 307–316; 2000.Google Scholar
  21. Majumdar M. K.; Thiede M. A.; Mosa J. D.; Moorman M.; Gerson S. L. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell Physiol. 176: 57–66; 1998.PubMedCrossRefGoogle Scholar
  22. Martin D. R.; Cox N. R.; Hathcock T. L.; Niemeyer G. P.; Baker H. J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 308: 879–886; 2002.PubMedCrossRefGoogle Scholar
  23. Meirelles L. D. S.; Nardi N. B. Murine marrow derived mesenchymal stem cell. Isolation, in vitro expansion, and characterization. Brit. J. Hemat. 123: 702–711; 2003.CrossRefGoogle Scholar
  24. Mosca J. D.; Hendricks J. K.; Buyaner D.; Davis-Sproul J.; Chuang L. C.; Majumdar M. K.; Chopra R.; Barry F.; Murphy M.; Thiede M. A.; Junker U.; Rigg R. J.; Forestell S. P.; Böhnlein E.; Storb R.; Sandmaier B. M. Mesenchymal stem cells as vehicles for gene delivery. Clin. Orthop. 379: 71–90; 2000.CrossRefGoogle Scholar
  25. Nadri S.; Soleimani M. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev. Biol. Anim. 43: 276–282; 2007.PubMedCrossRefGoogle Scholar
  26. Nadri S.; Soleimani M.; Hosseini R. H.; Massumi M.; Atashi A. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51: 723–729; 2007.PubMedCrossRefGoogle Scholar
  27. Ogawa M.; Sugawara S.; Kunisada T.; Sudo T.; Hayashi S.; Nishikawa S.; Kodama H.; Nishikawa S. Flt3/Flk-2 and c-Kit are not essential for the proliferation of B lymphoid progenitor cells in the bone marrow of the adult mouse. Exp. Hematol. 26: 478–488; 1998.PubMedGoogle Scholar
  28. Osawa M.; Hanada K.; Hamada H.; Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245; 1996.PubMedCrossRefGoogle Scholar
  29. Peister A.; Mellad J. A.; Larsen L. L.; Hall B. M.; Gibson L. F.; Prockop D. J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662–1668; 2004.PubMedCrossRefGoogle Scholar
  30. Petite H.; Viateau V.; Bensaid W.; Meunier A.; Depollak C.; Bourguignon M.; Oudina K.; Sedel L.; Guillemin G. Tissue engineered bone regeneration. Nat. Biotechnol. 18: 959–963; 2000.PubMedCrossRefGoogle Scholar
  31. Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 248: 143–147; 1999.CrossRefGoogle Scholar
  32. Quarto R.; Mastrogiacomo M.; Cancedda R.; Kutepdda S. M.; Mukhachev V.; Lavroukov A.; Kon E.; Marcacci M. Repair of large bone defect with the use of autogenic bone marrow stromal cell. N. Engl. J. Med. 344: 385–386; 2001.PubMedCrossRefGoogle Scholar
  33. Ringe J.; Kaps C.; Schmitt B.; Buscher K.; Bartel J.; Smolian H.; Schultz O.; Burmester G. R.; Haupl T.; Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 321–327; 2002.PubMedCrossRefGoogle Scholar
  34. Shao X.; Goh J. C.; Hutmacher D. W.; Lee E. H.; Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in rabbit model. Tissue Eng. 12: 1539–1551; 2006.PubMedCrossRefGoogle Scholar
  35. Sugaya K. Potential use of stem cells in neuro-replacement therapies for neurodegenerative diseases. Int. Rev. Cytol. 228: 1–30; 2003.PubMedCrossRefGoogle Scholar
  36. Sun S.; Guo Z.; Xiao X.; Liu B.; Liu X.; Tang P. H.; Mao N. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem. Cells 21: 527–535; 2003.PubMedCrossRefGoogle Scholar
  37. Tropel P.; Noel D.; Platet N.; Legrand P.; Benabid A. L.; Berger F. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395–406; 2004.PubMedCrossRefGoogle Scholar
  38. Xian C. J.; Foster B. K. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr. Stem. Cell Res. Ther. 1: 213–229; 2006.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  • Mohamadreza Baghaban Eslaminejad
    • 1
  • Samad Nadri
    • 2
  1. 1.Stem Cell DepartmentCell Sciences Research Center, Royan Institute, ACECRTehranIran
  2. 2.Department of Stem Cells and Tissue EngineeringStem Cell Technology InstituteTehranIran

Personalised recommendations