Insect cell culture and applications to research and pest management

  • Guy SmaggheEmail author
  • Cynthia L. Goodman
  • David Stanley


Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect orders and from several different tissue sources. These cell lines are used as research tools in virology, in studies of signaling mechanisms to study insect immunity, hemocyte migration, and to test hypotheses about gene expression, and in screening programs designed to discover new insecticide chemistries. Virology research is revealing fundamentally new information on virus/host cell interactions. Studies in gene expression are uncovering signal transduction pathways that are new to insect science. Research is leading to the development of high-speed screening technologies that are essential in the search for new insect pest management tools. A few insect cell lines are, in routine industrial processes, designed to produce proteins of biomedical significance. Both primary cell cultures and established lines are used in basic biological studies to reveal how insect cells work. This review is designed to briefly cover the history of insect cell culture, recount some recent advances in the field, and offer a vision of the future of insect cell culture.


Insect cells In vitro Biotechnology Virology Cell migration Gene expression Screening Biorational insecticides Functional genomics 



We gratefully thank Dr. Arthur McIntosh (BCIRL) for his helpful information. Dr. Guy Smagghe acknowledges the support by Ghent University, the Flemish Institute for Promotion of Scientific Research in Industry (IWT), and the Fund for Scientific Research (FWO-Vlaanderen). Research in BCIRL was supported by the USDA/Agricultural Research Service. This article reports the results of research only and mention of a proprietary product does not constitute an endorsement or recommendation for its use by the USDA.


  1. Attoui, H.; Jaafar, F. M.; Belhouchet, M.; Biagini, P.; Cantaloube, J.-F.; de Micco, P.; de Lamballerie, X. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 343: 212–223; 2005.PubMedGoogle Scholar
  2. Baker, M. D.; Wolanin, P. M.; Stock, J. B. Systems biology of bacterial chemotaxis. Curr. Opin. Microbiol 9: 187–192; 2006.PubMedGoogle Scholar
  3. Beckmann, M.; Haack, K. J. Chemical pest control—insecticides for agriculture. Chem. Unserer Zeit 37: 88–97; 2003.Google Scholar
  4. Belloncik, S.; Petcharawan, O.; Couillard, M.; Charpentier, G.; Larue, B.; Guardado, H.; Charaeonsak, S.; Imanishi, S. Development and characterization of a continuous cell line, AFKM-On-H, from hemocytes of the European corn borer Ostrinia nubilalis (Hübner) (Lepidoptera, Pyralidae). In Vitro Cell. Dev. Biol. Anim 43: 245–254; 2007.PubMedGoogle Scholar
  5. Berger, E.; Ringler, R.; Alahiotis, S.; Frank, M. Ecdysone-induced changes in morphology and protein synthesis in Drosophila cell cultures. Dev. Biol 62: 498–511; 1978.PubMedGoogle Scholar
  6. Berger, E.; Wyss, C. Acetylcholinesterase induction by β-ecdysone in Drosophila cell lines and their hybrids. Somatic Cell Genet 6: 631–640; 1980.PubMedGoogle Scholar
  7. Boyapalle, S.; Pal, N.; Miller, W. A.; Bonning, B. C. A glassy-winged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). J. Invertebr. Pathol 94: 130–139; 2006.PubMedGoogle Scholar
  8. Boyden, S. The chemotacxtic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med 115: 453–466; 1962.PubMedGoogle Scholar
  9. Bryant, B.; Blair, C. D.; Olson, K. E.; Clem, R. J. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol 38: 331–345; 2008.PubMedGoogle Scholar
  10. Bundey, S.; Raymond, S.; Dean, P.; Roberts, S. K.; Dillon, R. J.; Charnley, A. K. Eicosanoid involvement in the regulation of behavioral fever in the desert locust, Schistocerca gregaria. Arch. Insect Biochem. Physiol 52: 183–192; 2003.PubMedGoogle Scholar
  11. Chen, S.; Cheng, L.; Zhang, Q.; Lin, W.; Lu, X.; Brannan, J.; Zhou, Z. H.; Zhang, J. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line. Virology 318: 123–133; 2004.PubMedGoogle Scholar
  12. Cherbas, L.; Koehler, M. D.; Cherbas, P. Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. Dev. Genet 10: 177–188; 1989.PubMedGoogle Scholar
  13. Christian, P. D.; Scotti, P. D.; Biopesticides from small RNA viruses of insects: aspects of their in vitro production. In: Maramorosch K.; Loeb M. J. (eds) Invertebrate cell culture: looking toward the twenty first century. Proceedings of the IX International Conference on Invertebrate Cell Culture. Society for In Vitro Biology, San Francisco, pp 73–81; 1996.Google Scholar
  14. Clem, R. J. Baculoviruses and apoptosis: a diversity of genes and responses. Curr. Drug Targets 8: 1069–1074; 2007.PubMedGoogle Scholar
  15. Condreay, J. P.; Kost, T. A. Baculovirus expression vectors for insect and mammalian cells. Curr. Drug Targets 8: 1126–1131; 2007.PubMedGoogle Scholar
  16. Courgeon, A. M. Action of insect hormones at the cellular level. Morphological changes of a diploid cell line of Drosophila melanogaster. Exp. Cell Res 74: 327–336; 1972.PubMedGoogle Scholar
  17. Creamer, R. Invertebrate tissue cultures as a tool to study insect transmission of plant viruses. In Vitro Cell. Dev. Biol. Anim 29: 284–288; 1993.Google Scholar
  18. Day, M. F.; Grace, T. D. C. Cultures of insect tissues. Annu. Rev. Entomol 4: 17–38; 1959.Google Scholar
  19. Decombel, L.; Tirry, L.; Smagghe, G. Action of 24-epibrassinolide on cell line of the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol 58: 145–156; 2005.PubMedGoogle Scholar
  20. Dhadialla, T. S.; Retnakaran, A.; Smagghe, G. Insect growth and development disrupting insecticides. In: Gilbert L. I.; Iatrou K.; Gill S. (eds) Comprehensive insect molecular science. 6: Pergamon, New York, pp 55–116; 2005.Google Scholar
  21. Dinan, L. Ecdysteroid receptors in a tumorous blood cell line of Drosophila melanogaster. Arch. Insect Biochem. Physiol 2: 295–317; 1985.Google Scholar
  22. Dinan, L.; Bourne, P. C.; Meng, Y.; Sarker, S. D.; Tolentino, R. B.; Whithing, P. Assessment of natural products in the Drosophila melanogaster BII cell bioassay for ecdysteroid agonist and antagonist activities. Cell. Mol. Life Sci 58: 321–342; 2001.PubMedGoogle Scholar
  23. Dübendorfer, A.; Liebig, B. Cell differentiation in vitro and establishment of permanent ecdysone-responsive cell lines from embryonic tissues of the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol 38: 397–407; 1992.Google Scholar
  24. Durmus, Y.; Büyükgüzel, E.; Terzi, B.; Tunaz, H.; Stanley, D.; Büyükgüzel, K. Eicosanoids mediate melatonic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turioinellae. J. Insect Physiol 54: 17–24; 2007.PubMedGoogle Scholar
  25. Eide, P. E.; Caldwell, J. M.; Marks, E. P. Establishment of two cell lines from embryonic tissue of the tobacco hornworm, Manduca sexta (L.). In Vitro 11: 395–399; 1975.PubMedGoogle Scholar
  26. Elias, C. B.; Jardin, B.; Kamen, A. Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp. 225–245; 2007.Google Scholar
  27. Fritz, J. H.; Girardin, S. E.; Philpott, D. J. Innate immune defense through RNA interference. Sci. STKE 13: 1–4; 2006.Google Scholar
  28. Funk, C. J.; Hunter, W. B.; Achor, D. S. Replication of insect iridescent virus 6 in a whitefly cell line. J. Invertebr. Pathol 77: 144–146; 2001.PubMedGoogle Scholar
  29. Granados, R. R.; Naughton, M. Replication of Amscata moorei entomopoxvirus and Autographa californica nuclear polyhedrosis virus in hemocyte cell lines from Estigmene acrea. In: Kurstak E.; Maramorosch K. (eds) Invertebrate tissue culture. Applications in medicine, biology, and agriculture. Academic, New York, pp 379–389; 1976.Google Scholar
  30. Garcia, J. J.; Li, G.; Wang, P.; Zhong, J.; Granados, R. R. Primary and continuous midgut cell cultures from Pseudaletia unipuncta (Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. Anim 37: 353–359; 2001.PubMedGoogle Scholar
  31. Garcia, S.; Billecocq, A.; Crance, J.-M.; Prins, M.; Garin, D.; Bouloy, M. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol 87: 1985–1989; 2006.PubMedGoogle Scholar
  32. Gaw, S.-Y. Culturing all types of silkworm tissues using the monolayer culture. Chin. Sci. Bull 7: 219–220; 1958.Google Scholar
  33. Gerlo, S.; Verdood, P.; Gellersen, B.; Hooghe-Peters, E. L.; Kooijman, R. J. Mechanism of prostaglandin (PG)E2-induced prolactin expression in human T cells: cooperation of two PGE2 receptor subtypes, E-Prostanoid (EP) 3 and EP4, via calcium- and cyclic adenosine 5′-monophosphate-mediated signaling pathways. J. Immunol 173: 5952–5962; 2004.PubMedGoogle Scholar
  34. Gillespie, J. P.; Kanost, M. R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol 42: 611–643; 1997.PubMedGoogle Scholar
  35. Glaser, R. W. The growth of insect blood cells in vitro. Psyche 24: 1–6; 1917.Google Scholar
  36. Goodman, C. L.; El Sayed, G. N.; McIntosh, A. H.; Grasela, J. J.; Stiles, B. Establishment and characterization of insect cell lines from 10 lepidopteran species. In Vitro Cell. Dev. Biol. Anim 37: 367–373; 2001.PubMedGoogle Scholar
  37. Goodman, W. G.; Granger, N. A. The juvenile hormone. In: Gilbert L. I.; Iatrou K.; Gill S. (eds) Comprehensive insect molecular science. 3: Pergamon, New York, pp 319–408; 2005.Google Scholar
  38. Goodwin, R. H.; Adams, J. R.; Shapiro, M. Replication of the entomopoxvirus from Amscata moorei in serum-free cultures of a gypsy moth cell line. J. Invertebr. Pathol 56: 190–205; 1990.Google Scholar
  39. Grace, T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature (London) 195: 788–789; 1962.Google Scholar
  40. Grace, T. D. C. Establishment of a line cells from the silkworm, Bombyx mori. Nature (London) 216: 613; 1967.Google Scholar
  41. Gringorten, J. L. Ion balance in the lepidopteran midgut and insecticidal action of Bacillus thuringiensis. In: Ishaaya I. (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin, pp 167–207; 2001.Google Scholar
  42. Gundersen-Rindal, D.; Dougherty, E. M. Evidence for integration of Glyptapanteles indiensis polydnavirus DNA into the chromosome of Lymantria dispar in vitro. Virus Res 66: 27–37; 2000.PubMedGoogle Scholar
  43. Gundersen-Rindal D.; Lynn, D. E. Polydnavirus integration in lepidopteran host cells in vitro. J. Insect Physiol 49: 453–462; 2003.PubMedGoogle Scholar
  44. Hemmes, H.; Lakatos, L.; Goldbach, R.; Burgyan, J.; Prins, M. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 13: 1079–1089; 2007.PubMedGoogle Scholar
  45. Hoa, N. T.; Keene, K. M.; Olson, K. E.; Sheng, L. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem. Mol. Biol 33: 949–957; 2003.PubMedGoogle Scholar
  46. Hoshino, K.; Isawa, H.; Tsuda, Y.; Yano, K.; Sasaki, T.; Yuda, M.; Takasaki, T.; Kobayashi, M.; Sawabe, K. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405–414; 2007.PubMedGoogle Scholar
  47. Hunnicutt, L. E.; Hunter, W. B.; Cave, R. D.; Powell, C. A.; Mozoruk, J. J. Complete genome sequence and molecular characterization of Homalodisca coagulata virus-1, a novel virus discovered in the glassy-winged sharpshooter (Hemiptera: Cicadellidae). Virology 350: 67–78; 2006.PubMedGoogle Scholar
  48. Hunter, W. B.; Katsar, C. S.; Chaparro, J. X. Nucleotide sequence of 3′-end of Homalodisca coagulata Virus-1. A new leafhopper-infecting virus from the glassy-winged sharpshooter. J. Insect Sci. 6.28. Online:; 2006.Google Scholar
  49. Hunter, W. B.; Polston, J. E. Development of a continuous whitefly cell line [Homoptera: Aleyrodidae: Bemisia tabaci (Gennadius)] for the study of begomovirus. J. Invertebr. Pathol 77: 33–36; 2001.PubMedGoogle Scholar
  50. Jin, T.; Hereld, D. Moving toward understanding eukaryotic chemotaxis. Eur. J. Cell Biol 85: 905–913; 2006.PubMedGoogle Scholar
  51. Kamita, S. G.; Do, Z. N.; Samra, A. I.; Hagler, J. R.; Hammock, B. D. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae). In Vitro Cell. Dev. Biol. Anim 41: 149–153; 2005.PubMedGoogle Scholar
  52. Keene, K. M.; Foy, B. D.; Sanchez-Vargas, I.; Beaty, B. J.; Blair, C. D.; Olson, K. E. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A 101: 17240–17245; 2004.PubMedGoogle Scholar
  53. Kim, M.-K.; Sisson, G.; Stoltz, D. Ichnovirus infection of an established gypsy moth cell line. J. Gen. Virol 77: 2321–2328; 1996.PubMedGoogle Scholar
  54. Knowles, B. H.; Ellar, D. J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxin with different insect specificity. Biochim. Biophys. Acta 924: 509–518; 1987.Google Scholar
  55. Lan, Q.; Gerenday, A.; Fallon, A. M. Cultured Aedes albopictus mosquito cells synthesize hormone-inducible proteins. In Vitro Cell. Dev. Biol. Anim 29: 813–818; 1993.Google Scholar
  56. Lavine, M. D.; Strand, M. R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol 32: 1295–1309; 2002.PubMedGoogle Scholar
  57. Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol 25: 697–743; 2007.PubMedGoogle Scholar
  58. Lennan, E.; Vandergaast, R.; Friesen, P. D. Baculovirus caspase inhibitors P49 and P35 block virus-induced apoptosis downstream of effector caspase DrICE activation in Drosophila melanogaster cells. J. Virol 81: 9319–9330; 2007.Google Scholar
  59. Lery, X.; Fediere, G.; Taha, A.; Salah, M.; Giannotti, J. A new small RNA virus persistently infecting an established cell line of Galleria mellonella, induced by a heterologous infection. J. Invertebr. Pathol 69: 7–13; 1997.PubMedGoogle Scholar
  60. Lezzi, M.; Wyss, C. The antagonism between juvenile hormone and ecdysone. In: Gilbert L. I. (ed) The juvenile hormones. Plenum, New York, pp 252–269; 1976.Google Scholar
  61. Li, H.; Bonning, B. C. Evaluation of the insecticidal efficacy of wild type and recombinant baculoviruses. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp 379–405; 2007.Google Scholar
  62. Liu, N. T.; Zia, T. U.; Gaw, Z. Y. Tissue culture methods for cultivation of virus grasserie. Wuhan University Journal, Natural Science 3: 98; 1959.Google Scholar
  63. Llewellyn, Z. N.; Salman, M. D.; Pauszek, S.; Rodriguez, L. L. Growth and molecular evolution of vesicular stomatitis serotype New Jersey in cells derived from its natural insect-host: evidence for natural adaptation. Virus Res 89: 65–73; 2002.PubMedGoogle Scholar
  64. Loeb, M. J.; Martin, P. A. W.; Hakim, R. S.; Goto, S.; Takeda, M. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol 47: 599–606; 2001.PubMedGoogle Scholar
  65. Long, S. H.; McIntosh, A. H.; Grasela, J. J.; Goodman, C. L. The establishment of a Colorado potato beetle (Coleoptera: Chrysomelidae) pupal cell line. Appl. Entomol. Zool 37: 447–450; 2002.Google Scholar
  66. Lynn, D. E. Available lepidopteran insect cell lines. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp 117–144; 2007.Google Scholar
  67. Lynn, D. E.; Hung, A. C. F. Development of continuous cell lines from the egg parasitoids Trichogramma confusum and T. exiguum. Arch. Insect Biochem. Physiol 18: 99–104; 1991.PubMedGoogle Scholar
  68. Lynn, D. E.; Oberlander, H. The establishment of cell lines from imaginal wing discs of Spodoptera frugiperda and Plodia interpunctella. J. Insect Physiol 29: 591–596; 1983.Google Scholar
  69. Maeda, S. Bombyx mori nuclear polyhedrosis virus and their use for expression of foreign genes in insect cells. In: Mitsuhashi J. (ed) Invertebrate cell system applications. CRC, Boca Raton, pp 167–181; 1989.Google Scholar
  70. Marks, E. P. Insect tissue culture—overview 1971–1978. Annu. Rev. Entomol 25: 73–101; 1980.Google Scholar
  71. Marutani-Hert, M.; Hunter, W. B.; Hall, D. G. Establishment of Asian citrus psyllid (Diaphorina citri) primary cultures. In Vitro Cell. Dev. Biol. Anim. in press; 2009.Google Scholar
  72. McCearth, K. J.; Gooday, G. W. A rapid and sensitive microassay for determination of chitinolytic activity. J. Microbiol. Methods 14: 229–237; 1992.Google Scholar
  73. McIntosh, A. H.; Grasela, J. J.; Ignoffo, C. M. In vitro host range of the Hz-1 nonoccluded virus in insect cell lines. In Vitro Cell. Dev. Biol. Anim 43: 196–201; 2007.PubMedGoogle Scholar
  74. Merchant, D.; Ertl, R. L.; Rennard, S. I.; Stanley, D. W.; Miller, J. S. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol 54: 215–221; 2008.PubMedGoogle Scholar
  75. Metakovskii, E. V.; Cherdantseva, E. M.; Gvozdev, V. A. Action of ecdysterone on surface membrane glycoproteins of Drosophila melanogaster cells in culture. Mol. Biol 11: 158–170; 1977.Google Scholar
  76. Mikitani, K. Sensitive, rapid and simple method for evaluation of ecdysteroid agonist activity based on the mode of action of the hormone. Journal of Sericultural Science of Japan 64: 534–539; 1995.Google Scholar
  77. Mikitani, K. A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 3,5-di-tert-butyl-4hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem. Biophys. Res. Commun 227: 427–432; 1996.PubMedGoogle Scholar
  78. Miller, J. S.; Nguyen, T.; Stanley-Samuelson, D. W. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. U. S. A 91: 12418–12422; 1994.PubMedGoogle Scholar
  79. Mitsuhashi, J. A new continuous cell line from larvae of the mosquito Aedes albopictus Diptera Culicidae. Biomed. Res. (Tokyo) 2: 599–606; 1981.Google Scholar
  80. Mosallanejad, H.; Soin, T.; Smagghe, G. Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm Spodoptera exigua. Arch. Insect Biochem. Physiol 67: 36–49; 2008a.PubMedGoogle Scholar
  81. Mosallanejad, H.; Soin, T.; Swevers, L.; Iatrou, K.; Nakagawa, Y.; Smagghe, G. Non-steroidal ecdysteroid agonist chromafenozide: gene induction activity, cell proliferation inhibition and larvicidal toxicity. Pestic. Biochem. Physiol 92: 70–76; 2008b.Google Scholar
  82. Mudiganti, U.; Hernandez, R.; Ferreira, D.; Brown, D. T. Sindbis virus infection of two model insect cell systems: a comparative study. Virus Res 122: 28–34; 2006.PubMedGoogle Scholar
  83. Nakagawa, Y.; Matsutani, M.; Kurihara, N.; Nishimura, K.; Fujita, T. Quantitative structure–activity studies of benzoylphenylurea larvicides. VIII. Inhibition of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis Walker. Pestic. Biochem. Physiol 43: 141–151; 1989.Google Scholar
  84. Nauen, R.; Smagghe, G. Mode of action of etoxazole. Pest Manag. Sci 62: 375–382; 2006.Google Scholar
  85. Negishi, M.; Katoh, H. Cyclopentenone prostaglandin receptors. Prostaglandins Other Lipid Mediat 68–69: 611–617; 2002.PubMedGoogle Scholar
  86. Oberlander, H.; Silhacek, D. L. New perspectives on the mode of action of benzoylphenylurea insecticides. In: Ishaaya I.; Degheele D. (eds) Insecticides with novel modes of action. Springer, Berlin, pp 92–105; 1998.Google Scholar
  87. Palli, S. R.; Caputo, G. F.; Brownwright, A. J.; Sofi, S. S. Studies on apoptosis in a continuous midgut cell line, CF-203, of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield, pp 43–51; 1997a.Google Scholar
  88. Palli, S. R.; Retnakaran, A. Molecular and biochemical aspects of chitin synthesis inhibition. In: Jolles P.; Muzzarelli R. A. A. (eds) Chitin and chitinases. Birkhäuser, Basel, pp 85–98; 1999.Google Scholar
  89. Palli, S. R.; Sohi, S. S.; Cook, B. J.; Primavera, M.; Retnakaran, A. Screening of 12 continuous cell lines for apoptosis. In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield1997b.Google Scholar
  90. Peel, D. J.; Milner, M. J. The response of Drosophila imaginal disc cell lines to ecdysteroids. Roux’s Arch. Dev. Biol 202: 23–35; 1992.Google Scholar
  91. Potvin, L.; Laprade, R.; Schwartz, J. L. Cry1Ac, a Bacillus thuringiensis toxin, triggers extracellular Ca2+ influx ad Ca2+ release from intracellular stores in Cf1 cells (Choristoneura fumiferana, Lepidoptera). J. Exp. Biol 201: 1851–1858; 1998.PubMedGoogle Scholar
  92. Pringle, F. M.; Johnson, K. N.; Goodman, C. L.; McIntosh, A. H.; Ball, L. A. Providence virus: a new member of the Tetraviridae that infects cultured insect cells. Virology 306: 359–370; 2003.PubMedGoogle Scholar
  93. Ress, C.; Maas, U.; Dorn, A. The Drosophila tumorous blood cell line l(2)mbn and its response to insect hormones, hormone agonists, and the natural growth regulators azadirachtin and plumbaginoids. In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield, pp 93–103; 1997.Google Scholar
  94. Sadrud-Din, S. Y.; Loeb, M. J.; Hakim, R. S. In vitro differentiation of isolated stem cells from the midgut of Manduca sexta larvae. J. Exp. Biol 199: 319–325; 1996.PubMedGoogle Scholar
  95. Sanchez-Vargas, I.; Travanty, E. A.; Keene, K. M.; Franz, A. W. E.; Beaty, B. J.; Blair, C. D.; Olson, K. E. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102: 65–74; 2004.PubMedGoogle Scholar
  96. Schmidt, M. R.; Brockmann, A.; Pirk, C. W. W.; Stanley, D. W.; Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol 54: 439–444; 2008.Google Scholar
  97. Schütz, S.; Sarnow, P. Interaction of viruses with the mammalian RNA interference pathway. Virology 344: 151–157; 2006.PubMedGoogle Scholar
  98. Sinisterra, X. H.; McKenzie, C. L.; Hunter, W. B.; Shatters, R. G. Jr. Differential transcriptional activity of plant pathogenic Begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyroididae). J. Gen. Virol 86: 1525–1532; 2005.PubMedGoogle Scholar
  99. Smagghe, G.; Braeckman, B. P.; Huys, N.; Raes, H. Cultured mosquito cells Aedes albopictus C6/36 (Dip., Culicidae) responsive to 20-hydroxyecdysone and non-steroidal ecdysone agonist. J. Appl. Entomol 127: 167–173; 2003.Google Scholar
  100. Smagghe, G.; Ryckaert, J.; Soin, T.; Caputo, G.; Van Damme, E. J. M. Effect of plant lectins on growth of insect midgut cells. In Vitro Cell. Dev. Biol. Anim 41: 34A; 2005a.Google Scholar
  101. Smagghe, G.; Vanhassel, W.; Moeremans, C.; De Wilde, D.; Goto, S.; Loeb, M. J.; Blackburn, M. B.; Hakim, R. S. Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann. N.Y. Acad. Sci 1040: 472–475; 2005b.PubMedGoogle Scholar
  102. Smith, H. C.; Cavanaugh, C. K.; Friz, J. L.; Thompson, C. S.; Saggers, J. A.; Michelotti, E. I.; Garcia, J.; Tice, C. M. Synthesis and SAR of cis-1-benzoyl-1,2,3,4-tetrahydroquinoline ligands for control of gene expression in ecdysone responsive systems. Bioorg. Med. Chem. Lett 13: 1943–1946; 2003.PubMedGoogle Scholar
  103. Sohi, S. S. Development of lepidopteran cell lines. In: Richardson C. D. (ed) Methods in molecular biology. Baculovirus expression protocols. Humana, New York, pp 397–411; 1995.Google Scholar
  104. Soin, T.; Swevers, L.; Mosallanejad, H.; Efrose, R.; Labropoulou, V.; Iatrou, K.; Smagghe, G. Juvenile hormone analogs do not affect directly the activity of the ecdysteroid receptor complex in insect culture cell lines. J. Insect Physiol 54: 429–438; 2008.PubMedGoogle Scholar
  105. Spindler-Barth, M.; Spindler, K.-D. Ecdysteroid resistant subclones of the epithelial cell line from Chironomus tentans (Insecta, Diptera). I. Selection and characterization of resistant clones. In Vitro Cell. Dev. Biol. Anim 34: 116–122; 1998.PubMedGoogle Scholar
  106. Spindler-Barth, M.; Spindler, K.-D.; Londershausen, M.; Thomas, H. Inhibition of chitin synthesis in an insect cell line. Pestic. Sci 25: 115–121; 1989.Google Scholar
  107. Stanley, D.; Miller, J. S. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl 119: 1–13; 2006.Google Scholar
  108. Stanley, D.; Shapiro, M. Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantria dispar to nucleopolyhedrovirus LdMNPV. J. Invertebr. Pathol 95: 119–124; 2007.PubMedGoogle Scholar
  109. Stanley, D. W. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol 51: 25–44; 2006.PubMedGoogle Scholar
  110. Stanley, D. W.; Goodman, C.; An, S.; McIntosh, A.; Song, Q. Prostaglandins A1 and E1 influence gene expression in an established insect cell line (BCIRL-HzAM1 cells). Insect Biochem. Mol. Biol 38: 275–284; 2008.PubMedGoogle Scholar
  111. Stiles, B.; Newman, S. M. Evidence for the induction of cuticle proteins by 20-hydroxyecdysone in 2 established insect cell lines. Arch. Insect Biochem. Physiol 21: 23–40; 1992.Google Scholar
  112. Suchman, E. L.; Carlson, J. O. Production of mosquito densonucleosis viruses by Aedes albopictus C6/36 cells adapted to suspension culture in serum-free protein-free media. In Vitro Cell. Dev. Biol. Anim 40: 74–75; 2004.PubMedGoogle Scholar
  113. Swevers, L.; Kravariti, L.; Ciolfi, S.; Xenou-Kokoletsi, M.; Wong, G.; Ragousis, N.; Smagghe, G.; Nakagawa, Y.; Mazomenos, V.; Iatrou, K. A high-throughput screening system for fast detection of ecdysteroid mimetic and antagonistic substances using transformed Bombyx mori-derived cell lines. FASEB J 18: 134–146; 2004.PubMedGoogle Scholar
  114. Tan, B.-H.; Nason, E.; Staeuber, N.; Jiang, W.; Monastryrskaya, K.; Roy, P. RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells. J. Virol 75: 3937–3947; 2001.PubMedGoogle Scholar
  115. Tice, C. M.; Hormann, R. E.; Thompson, C. S.; Fritz, J. L.; Cavanaugh, C. K.; Michelotti, E. L.; Garcia, J.; Nicolas, Z.; Alberico, F. Synthesis and SAR of alpha-acylaminoletone ligands for control of gene expression. Bioorg. Med. Chem. Lett 13: 475–478; 2003.PubMedGoogle Scholar
  116. Toya, T.; Fukasawa, H.; Masui, A.; Endo, Y. Potent and selective partial ecdysone agonist activity of chromafenozide in Sf-9 cells. Biochem. Biophys. Res. Commun 292: 1087–1091; 2002.PubMedGoogle Scholar
  117. Trager, W. J. Cultivation of virus grasserie in silkworm tissue. J. Exp. Med 61: 501–513; 1953.Google Scholar
  118. Trisyono, A.; Goodman, C. L.; Grasela, J. J.; McIntosh, A. H.; Chippendale, G. M. Establishment and characterization of an Ostrinia nubilalis cell line, and its response to ecdysone agonists. In Vitro Cell. Dev. Biol. Anim 36: 400–404; 2000.PubMedGoogle Scholar
  119. Van Damme, E. J. M.; Rouge, P.; Peumans, W. J. Carbohydrate–protein interactions: plant lectins. In: Kamerling J. P.; Boons G. J.; Lee Y. C.; Suzuki A.; Taniguchi N.; Voragen A. J. G. (eds) Comprehensive glycoscience. From chemistry to systems biology. 3: Elsevier, New York, pp 563–599; 2007.Google Scholar
  120. Vandenborre, G.; Lannoo, N.; Smagghe, G.; Daniel, E.; Breite, A.; Soin, T.; Jacobsen, L.; Van Damme, E. J. M. Cell-free expression and functionality analysis of the tobacco lectin. In Vitro Cell. Dev. Biol. Anim 44: 228–235; 2008.PubMedGoogle Scholar
  121. Van Rij, R. P.; Saleh, M.-C.; Berry, B.; Foo, C.; Houk, A.; Antoniewski, C.; Andino, R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20: 2985–2995; 2006.PubMedGoogle Scholar
  122. Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J.; McCawley, P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13: 213–217; 1977.PubMedGoogle Scholar
  123. Vlak, J. M. Professor Shang yin Gao (1909–1989): his legacy in insect cell culture and insect virology. J. Invertebr. Pathol 95: 152–160; 2007.PubMedGoogle Scholar
  124. Wang, P.; McCarthy, W. J. Cytolytic activity of Bacillus thuringiensis Cry1C and Cry1AC toxins to Spodoptera sp. midgut epithelial cells in vitro. In Vitro Cell. Dev. Biol. Anim 33: 315–323; 1997.PubMedGoogle Scholar
  125. Ward, G. B.; Newman, S. M.; Klosterman, H. J.; Marks, E. P. Effect of 20-hydroxyecdysone and diflubenzuron on chitin production by a cockroach cell line. In Vitro Cell. Dev. Biol. Anim 24: 326–332; 1988.Google Scholar
  126. Weaver, S. C. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol 299: 285–314; 2006.PubMedGoogle Scholar
  127. Wheelock, C. E.; Nakagawa, Y.; Harada, T.; Oikawa, N.; Akamatsu, M.; Smagghe, G.; Stefanou, D.; Iatrou, K.; Swevers, L. High throughput screening of ecdysone agonists using a reporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorg. Med. Chem 14: 1143–1159; 2006.PubMedGoogle Scholar
  128. Williams, C. M. Third generation pesticides. Sci. Am 217: 13–17; 1967.PubMedCrossRefGoogle Scholar
  129. Wu, C.-Y.; Yang, H.-N.; Lo, C.-F.; Wang, C.-H. A Perina nuda cell line (NTU-Pn-HF) from pupal ovary that is persistently infected with a picorna-like virus (PnPV). Appl. Entomol. Zool 37: 171–179; 2002.Google Scholar
  130. Wyss, C. Chironomus tentans epithelial cell lines sensitive to ecdysteroids, juvenile hormone, insulin and heat shock. Exp. Cell Res 139: 309–319; 1982.PubMedGoogle Scholar
  131. Zhang, X. B.; Candas, M.; Griko, N. B.; Taussig, R.; Bulla, L. A. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. U. S. A 103: 9897–9902; 2006.PubMedGoogle Scholar
  132. Zhou, F.; Pu, Y.; Wei, T.; Liu, H.; Deng, W.; Wei, C.; Ding, B.; Omura, T.; Li, Y. The P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proc. Natl. Acad. Sci. U. S. A 104: 19547–19552; 2007.PubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2009

Authors and Affiliations

  • Guy Smagghe
    • 1
    Email author
  • Cynthia L. Goodman
    • 2
  • David Stanley
    • 2
  1. 1.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Biological Control of Insects Research LaboratoryUSDA/ARSColumbiaUSA

Personalised recommendations