Advertisement

Isolation and culture of human umbilical artery smooth muscle cells expressing functional calcium channels

  • E. Cairrão
  • A. J. Santos-Silva
  • E. Alvarez
  • I. Correia
  • I. VerdeEmail author
Article

Abstract

The human umbilical cord is a biological sample that can be easily obtained just after birth. A methodology was developed to perform cultures of human umbilical artery smooth muscle cells (HUASMC) expressing contractile proteins and functional ionic channels. To avoid fibroblast and endothelial cell contamination, we mechanically separated the tunica media, which only contains HUASMC and matrix proteins. To isolate the cells, collagenase V and elastase were used as hydrolyzing enzymes. The isolated cells were plated in collagen-coated dishes to obtain cultures of HUASMC. The cells obtained after different passages (1 to 6) exhibit the characteristic vascular smooth cell morphology and express smooth muscle alpha-2 actin, myosin heavy chain SM1, and alpha subunits of L- and T-type calcium channels (Cav 1.2, Cav 1.2, and Cav 3.2). Electrophysiology recordings for L- and T-type calcium channels were made, indicating that these channels are functional in the cultured cells. In conclusion, the procedure developed allows obtaining cultures of HUASMC expressing contractile proteins and also functional ionic channels. These cells could be used to study cellular and molecular aspects about the regulation of the vascular function.

Keywords

Umbilical artery Smooth muscle cells Patch-clamp Calcium channels 

Notes

Acknowledgements

We show gratitude to the donor mothers and the Gynecology–Obstetrics Department staff of “Centro Hospitalar da Cova da Beira EPE” (Covilhã, Portugal) for their disinterested collaboration. We also thanks Luiza Bretenfeld and Cristina Ramalhinho for providing the fibroblast cultures and the FCT (Fundação para a Ciência e a Tecnologia, Portugal) for supporting grants SFRH/BPD/14458/2003, SFRH/BPD/19776/2004, and SFRH/BDE/15532/2004.

References

  1. Arciniegas, E.; Graterol, A.; Sanchez, F. Characterization of nonmuscle cells present in the intima of normal adult bovine pulmonary artery. Anat. Rec. 258: 262–268; 2000. doi: 10.1002/(SICI)1097-0185(20000301)258:3<262::AID-AR5>3.0.CO;2-7.PubMedCrossRefGoogle Scholar
  2. Babij, P.; Periasamy, M. Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J. Mol. Biol. 210: 673–679; 1989. doi: 10.1016/0022-2836(89)90142-3.PubMedCrossRefGoogle Scholar
  3. Buzzard, C. J.; Pfister, S. L.; Campbell, W. B. Endothelium-dependent contractions in rabbit pulmonary artery are mediated by thromboxane-A2. Circ. Res. 72: 1023–1034; 1993.PubMedGoogle Scholar
  4. Campbell, J. H.; Campbell, G. R. Culture techniques and their applications to studies of vascular smooth muscle. Clin. Sci. (Lond.) 85: 501–513; 1993.Google Scholar
  5. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16: 521–555; 2000. doi: 10.1146/annurev.cellbio.16.1.521.PubMedCrossRefGoogle Scholar
  6. Cribbs, L. L. T-type Ca2+ channels in vascular smooth muscle: Multiple functions. Cell. Calcium. 40: 221–230; 2006. doi: 10.1016/j.ceca.2006.04.026.PubMedCrossRefGoogle Scholar
  7. Ertel, E. A.; Campbell, K. P.; Harpold, M. M.; Hofmann, F.; Mori, Y.; Perez-Reyes, E.; Schwartz, A.; Snutch, T. P.; Tanabe, T.; Birnbaumer, L.; Tsien, R. W.; Catterall, W. A. Nomenclature of voltage-gated calcium channels. Neuron. 25: 533–535; 2000. doi: 10.1016/S0896-6273(00)81057-0.PubMedCrossRefGoogle Scholar
  8. Gollasch, M.; Nelson, M. T. Voltage-dependent Ca2+ channels in arterial smooth muscle cells. Kidney Blood Press. Res. 20: 355–371; 1997.PubMedCrossRefGoogle Scholar
  9. Haugen, G.; Mellembakken, J.; Stray-Pedersen, S. Characterization of the vasodilatatory response to serotonin in human umbilical arteries perfused in vitro. The influence of the endothelium. Early Hum. Dev. 47: 185–193; 1997. doi: 10.1016/S0378-3782(96)01778-1.PubMedCrossRefGoogle Scholar
  10. Heimli, H.; Kahler, H.; Endresen, M. J.; Henriksen, T.; Lyberg, T. A new method for isolation of smooth muscle cells from human umbilical cord arteries. Scand. J. Clin. Lab. Invest. 57: 21–29; 1997.PubMedCrossRefGoogle Scholar
  11. Hughes, A. D.; Wijetunge, S.; Parkinson, N. A. Isolation of single vascular smooth muscle cells from human omental resistance arteries. J. Hum. Hypertens. 8: 615–618; 1994.PubMedGoogle Scholar
  12. Ives, H. E.; Schultz, G. S.; Galardy, R. E.; Jamieson, J. D. Preparation of functional smooth muscle cells from the rabbit aorta. J. Exp. Med. 148: 1400–1413; 1978. doi: 10.1084/jem.148.5.1400.PubMedCrossRefGoogle Scholar
  13. Lacinova, L. Voltage-dependent calcium channels. Gen. Physiol. Biophys. 24Suppl 1: 1–78; 2005.PubMedGoogle Scholar
  14. Lacinova, L.; Hofmann, F. Ca2+- and voltage-dependent inactivation of the expressed L-type Cav1.2 calcium channel. Arch. Biochem. Biophys. 437: 42–50; 2005. doi: 10.1016/j.abb.2005.02.025.PubMedCrossRefGoogle Scholar
  15. Leik, C. E.; Willey, A.; Graham, M. F.; Walsh, S. W. Isolation and culture of arterial smooth muscle cells from human placenta. Hypertension 43: 837–840; 2004. doi: 10.1161/01.HYP.0000119191.33112.9c.PubMedCrossRefGoogle Scholar
  16. Martin de Llano, J. J.; Fuertes, G.; Garcia-Vicent, C.; Torro, I.; Fayos, J. L.; Lurbe, E. Procedure to consistently obtain endothelial and smooth muscle cell cultures from umbilical cord vessels. Transl. Res. 149: 1–9; 2007. doi: 10.1016/j.trsl.2006.07.010.PubMedCrossRefGoogle Scholar
  17. Milesi, V.; Raingo, J.; Rebolledo, A.; Grassi de Gende, A. O. Potassium channels in human umbilical artery cells. J. Soc. Gynecol. Investig. 10: 339–346; 2003. doi: 10.1016/S1071-5576(03)00117-5.PubMedCrossRefGoogle Scholar
  18. Moosmang, S.; Lenhardt, P.; Haider, N.; Hofmann, F.; Wegener, J. W. Mouse models to study L-type calcium channel function. Pharmacol. Ther. 106: 347–355; 2005. doi: 10.1016/j.pharmthera.2004.12.003.PubMedCrossRefGoogle Scholar
  19. Murray, T. R.; Marshall, B. E.; Macarak, E. J. Contraction of vascular smooth muscle in cell culture. J. Cell Physiol. 143: 26–38; 1990. doi: 10.1002/jcp.1041430105.PubMedCrossRefGoogle Scholar
  20. Okker-Reitsma, G. H.; Dziadkowiec, I. J.; Groot, C. G. Isolation and culture of smooth muscle cells from human umbilical cord arteries. In Vitro Cell Dev. Biol. 21: 22–25; 1985. doi: 10.1007/BF02620909.PubMedCrossRefGoogle Scholar
  21. Owens, G. K.; Vernon, S. M.; Madsen, C. S. Molecular regulation of smooth muscle cell differentiation. J. Hypertens. Suppl. 14: S55–S64; 1996. doi: 10.1097/00004872-199609002-00012.PubMedCrossRefGoogle Scholar
  22. Pauly, R. R.; Bilato, C.; Cheng, L.; Monticone, R.; Crow, M. T. Vascular smooth muscle cell cultures. Methods Cell Biol. 52: 133–154; 1997. doi: 10.1016/S0091-679X(08)60377-5.PubMedCrossRefGoogle Scholar
  23. Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83: 117–161; 2003.PubMedGoogle Scholar
  24. Perez-Reyes, E.; Cribbs, L. L.; Daud, A.; Lacerda, A. E.; Barclay, J.; Williamson, M. P.; Fox, M.; Rees, M.; Lee, J. H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391: 896–900; 1998. doi: 10.1038/36110.PubMedCrossRefGoogle Scholar
  25. Rabkin, E.; Aikawa, M.; Stone, J. R.; Fukumoto, Y.; Libby, P.; Schoen, F. J. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104: 2525–2532; 2001. doi: 10.1161/hc4601.099489.PubMedCrossRefGoogle Scholar
  26. Rensen, S. S.; Doevendans, P. A.; van Eys, G. J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15: 100–108; 2007.PubMedGoogle Scholar
  27. Salemme, S.; Rebolledo, A.; Speroni, F.; Petruccelli, S.; Milesi, V. L, P-/Q- and T-type Ca2+ channels in smooth muscle cells from human umbilical artery. Cell Physiol. Biochem. 20: 55–64; 2007.PubMedGoogle Scholar
  28. Smirnov, S. V.; Aaronson, P. I. Ca2+ currents in single myocytes from human mesenteric arteries: evidence for a physiological role of L-type channels. J. Physiol. 457: 455–475; 1992.PubMedGoogle Scholar
  29. Zhang, J.; Berra-Romani, R.; Sinnegger-Brauns, M. J.; Striessnig, J.; Blaustein, M. P.; Matteson, D. R. Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am. J. Physiol. Heart Circ. Physiol. 292: H415–425; 2007. doi: 10.1152/ajpheart.01214.2005.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • E. Cairrão
    • 1
    • 2
  • A. J. Santos-Silva
    • 1
  • E. Alvarez
    • 1
  • I. Correia
    • 1
  • I. Verde
    • 1
    Email author
  1. 1.CICS – Centro de Investigação em Ciências da SaúdeUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Centro Hospitalar da Cova da Beira E.P.E. Quinta do AlvitoCovilhãPortugal

Personalised recommendations