Culture of endodermal stem/progenitor cells of the mouse tongue

  • Xiaoyan Luo
  • Tadashi Okubo
  • Scott Randell
  • Brigid L. M. Hogan


The tongue represents a very accessible source of tissue-specific epithelial stem cells of endodermal origin. However, little is known about the properties of these cells and the mechanisms regulating their proliferation and differentiation. Foxa2, an endodermal marker, is expressed throughout the tongue epithelium during embryonic development but becomes confined to a minority of basal cells and some taste bud sensory cells in the adult tongue. Using a previously described line of transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed under the control of a human keratin 5 promoter region (Krt5-eGFP), we have isolated a subpopulation of cells in the basal epithelial layer of the mouse tongue with a high efficiency of generating holoclones of undifferentiated cells in culture with a feeder layer. Krt5-GFPhi cells can both self renew and give rise to differentiated stratified keratinized epithelial cells when cultured on an air–liquid interface.


Tongue Endodermal basal stem cell Krt5-eGFP Colony forming efficiency Differentiation 


  1. Alappat S. R.; Zhang Z.; Suzuki K.; Zhang X.; Liu H.; Jiang R.; Yamada G.; Chen Y. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev. Biol. 2771: 102–113; 2005. doi:10.1016/j.ydbio.2004.09.010.PubMedCrossRefGoogle Scholar
  2. Asano-Miyoshi M.; Hamamichi R.; Emori Y. Cytokeratin 14 is expressed in immature cells in rat taste buds. J. Mol. Histol. 392: 193–199; 2008. doi:10.1007/s10735-007-9151-0.PubMedCrossRefGoogle Scholar
  3. Barrandon Y.; Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. U. S. A. 848: 2302–2306; 1987. doi:10.1073/pnas.84.8.2302.PubMedCrossRefGoogle Scholar
  4. Beidler L. M.; Smallman R. L. Renewal of cells within taste buds. J. Cell Biol. 272: 263–272; 1965. doi:10.1083/jcb.27.2.263.PubMedCrossRefGoogle Scholar
  5. Besnard V.; Wert S. E.; Hull W. M.; Whitsett J. A. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr. Patterns 52: 193–208; 2004. doi:10.1016/j.modgep.2004.08.006.PubMedCrossRefGoogle Scholar
  6. Bruen K. J.; Campbell C. A.; Schooler W. G.; deSerres S.; Cairns B. A.; Hultman C. S.; Meyer A. A.; Randell S. H. Real-time monitoring of keratin 5 expression during burn re-epithelialization. J. Surg. Res. 1201: 12–20; 2004. doi:10.1016/j.jss.2004.02.024.PubMedCrossRefGoogle Scholar
  7. Cheal M.; Oakley B. Regeneration of fungiform taste buds: temporal and spatial characteristics. J. Comp. Neurol. 1724: 609–626; 1977. doi:10.1002/cne.901720405.PubMedCrossRefGoogle Scholar
  8. Clayton E.; Doupe D. P.; Klein A. M.; Winton D. J.; Simons B. D.; Jones P. H. A single type of progenitor cell maintains normal epidermis. Nature 4467132: 185–189; 2007. doi:10.1038/nature05574.PubMedCrossRefGoogle Scholar
  9. Costea D. E.; Loro L. L.; Dimba E. A.; Vintermyr O. K.; Johannessen A. C. Crucial effects of fibroblasts and keratinocyte growth factor on morphogenesis of reconstituted human oral epithelium. J. Invest. Dermatol. 1216: 1479–1486; 2003. doi:10.1111/j.1523-1747.2003.12616.x.PubMedCrossRefGoogle Scholar
  10. Fuchs E. Scratching the surface of skin development. Nature 4457130: 834–842; 2007. doi:10.1038/nature05659.PubMedCrossRefGoogle Scholar
  11. Hall J. M.; Hooper J. E.; Finger T. E. Expression of sonic hedgehog, patched, and Gli1 in developing taste papillae of the mouse. J. Comp. Neurol. 4062: 143–155; 1999. doi:10.1002/(SICI)1096-9861(19990405)406:2<143::AID-CNE1>3.0.CO;2-X.PubMedCrossRefGoogle Scholar
  12. Hamamichi R.; Asano-Miyoshi M.; Emori Y. Taste bud contains both short-lived and long-lived cell populations. Neuroscience 1414: 2129–2138; 2006. doi:10.1016/j.neuroscience.2006.05.061.PubMedCrossRefGoogle Scholar
  13. Hume W. J.; Potten C. S. The ordered columnar structure of mouse filiform papillae. J. Cell Sci. 221: 149–160; 1976.PubMedGoogle Scholar
  14. Iwasaki S. Evolution of the structure and function of the vertebrate tongue. J. Anat. 2011: 1–13; 2002. doi:10.1046/j.1469-7580.2002.00073.x.PubMedCrossRefGoogle Scholar
  15. Iwatsuki K.; Liu H. X.; Gronder A.; Singer M. A.; Lane T. F.; Grosschedl R.; Mistretta C. M.; Margolskee R. F. Wnt signaling interacts with Shh to regulate taste papilla development. Proc. Natl. Acad. Sci. U. S. A. 1047: 2253–2258; 2007. doi:10.1073/pnas.0607399104.PubMedCrossRefGoogle Scholar
  16. Jonker L.; Kist R.; Aw A.; Wappler I.; Peters H. Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium. Mech. Dev. 12111: 1313–1322; 2004. doi:10.1016/j.mod.2004.07.002.PubMedCrossRefGoogle Scholar
  17. Jung H. S.; Oropeza V.; Thesleff I. Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae. Mech. Dev. 811–2: 179–182; 1999. doi:10.1016/S0925-4773(98)00234-2.PubMedCrossRefGoogle Scholar
  18. Kalinin A.; Marekov L. N.; Steinert P. M. Assembly of the epidermal cornified cell envelope. J. Cell Sci. 114Pt 17: 3069–3070; 2001.PubMedGoogle Scholar
  19. Kim J. Y.; Mochizuki T.; Akita K.; Jung H. S. Morphological evidence of the importance of epithelial tissue during mouse tongue development. Exp. Cell Res. 2902: 217–226; 2003. doi:10.1016/S0014-4827(03)00319-7.PubMedCrossRefGoogle Scholar
  20. Knapp L.; Lawton A.; Oakley B.; Wong L.; Zhang C. Keratins as markers of differentiated taste cells of the rat. Differentiation 585: 341–349; 1995. doi:10.1046/j.1432-0436.1995.5850341.x.PubMedCrossRefGoogle Scholar
  21. Liu F.; Thirumangalathu S.; Gallant N. M.; Yang S. H.; Stoick-Cooper C. L.; Reddy S. T.; Andl T.; Taketo M. M.; Dlugosz A. A.; Moon R. T.; Barlow L. A.; Millar S. E. Wnt-beta-catenin signaling initiates taste papilla development. Nat. Genet. 391: 106–112; 2007. doi:10.1038/ng1932.PubMedCrossRefGoogle Scholar
  22. Liu H. X.; Maccallum D. K.; Edwards C.; Gaffield W.; Mistretta C. M. Sonic hedgehog exerts distinct, stage-specific effects on tongue and taste papilla development. Dev. Biol. 2762: 280–300; 2004. doi:10.1016/j.ydbio.2004.07.042.PubMedCrossRefGoogle Scholar
  23. Mistretta C. M.; Liu H. X.; Gaffield W.; MacCallum D. K. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev. Biol. 2541: 1–18; 2003. doi:10.1016/S0012-1606(02)00014-3.PubMedCrossRefGoogle Scholar
  24. Miura H.; Kato H.; Kusakabe Y.; Tagami M.; Miura-Ohnuma J.; Ninomiya Y.; Hino A. A strong nerve dependence of sonic hedgehog expression in basal cells in mouse taste bud and an autonomous transcriptional control of genes in differentiated taste cells. Chem. Senses 299: 823–831; 2004. doi:10.1093/chemse/bjh248.PubMedCrossRefGoogle Scholar
  25. Miura H.; Kusakabe Y.; Harada S. Cell lineage and differentiation in taste buds. Arch. Histol. Cytol. 694: 209–225; 2006. doi:10.1679/aohc.69.209.PubMedCrossRefGoogle Scholar
  26. Miura H.; Kusakabe Y.; Sugiyama C.; Kawamatsu M.; Ninomiya Y.; Motoyama J.; Hino A. Shh and Ptc are associated with taste bud maintenance in the adult mouse. Mech. Dev. 1061–2: 143–145; 2001. doi:10.1016/S0925-4773(01)00414-2.PubMedCrossRefGoogle Scholar
  27. Nishida K.; Yamato M.; Hayashida Y.; Watanabe K.; Yamamoto K.; Adachi E.; Nagai S.; Kikuchi A.; Maeda N.; Watanabe H.; Okano T.; Tano Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 35112: 1187–1196; 2004. doi:10.1056/NEJMoa040455.PubMedCrossRefGoogle Scholar
  28. Okubo T.; Pevny L. H.; Hogan B. L. Sox2 is required for development of taste bud sensory cells. Genes Dev. 2019: 2654–2659; 2006. doi:10.1101/gad.1457106.PubMedCrossRefGoogle Scholar
  29. Potten C. S.; Al-Barwari S. E.; Hume W. J.; Searle J. Circadian rhythms of presumptive stem cells in three different epithelia of the mouse. Cell Tissue Kinet. 106: 557–568; 1977.PubMedGoogle Scholar
  30. Potten C. S.; Booth D.; Cragg N. J.; O’Shea J. A.; Tudor G. L.; Booth C. Cell kinetic studies in murine ventral tongue epithelium: cell cycle progression studies using double labelling techniques. Cell Prolif. 35Suppl 1: 16–21; 2002a. doi:10.1046/j.1365-2184.35.s1.2.x.PubMedCrossRefGoogle Scholar
  31. Potten C. S.; Booth D.; Cragg N. J.; O’Shea J. A.; Tudor G. L.; Booth C. Cell kinetic studies in the murine ventral tongue epithelium: the effects of repeated exposure to keratinocyte growth factor. Cell Prolif. 35Suppl 1: 22–31; 2002b. doi:10.1046/j.1365-2184.35.s1.3.x.PubMedCrossRefGoogle Scholar
  32. Potten C. S.; Booth D.; Cragg N. J.; Tudor G. L.; O’Shea J. A.; Appleton D.; Barthel D.; Gerike T. G.; Meineke F. A.; Loeffler M.; Booth C. Cell kinetic studies in the murine ventral tongue epithelium: thymidine metabolism studies and circadian rhythm determination. Cell Prolif. 35Suppl 1: 1–15; 2002c. doi:10.1046/j.1365-2184.35.s1.1.x.PubMedCrossRefGoogle Scholar
  33. Potten C. S.; Booth D.; Cragg N. J.; Tudor G. L.; O’Shea J. A.; Booth C.; Meineke F. A.; Barthel D.; Loeffler M. Cell kinetic studies in the murine ventral tongue epithelium: mucositis induced by radiation and its protection by pretreatment with keratinocyte growth factor (KGF). Cell Prolif. 35Suppl 1: 32–47; 2002d. doi:10.1046/j.1365-2184.35.s1.4.x.PubMedCrossRefGoogle Scholar
  34. Potten C. S.; Hume W. J.; Reid P.; Cairns J. The segregation of DNA in epithelial stem cells. Cell 153: 899–906; 1978. doi:10.1016/0092-8674(78)90274-X.PubMedCrossRefGoogle Scholar
  35. Rawlins E. L.; Hogan B. L. Intercellular growth factor signaling and the development of mouse tracheal submucosal glands. Dev. Dyn. 2334: 1378–1385; 2005. doi:10.1002/dvdy.20461.PubMedCrossRefGoogle Scholar
  36. Rhee H.; Polak L.; Fuchs E. Lhx2 maintains stem cell character in hair follicles. Science 3125782: 1946–-1949; 2006. doi:10.1126/science.1128004.PubMedCrossRefGoogle Scholar
  37. Sasaki H.; Hogan B. L. HNF-3 beta as a regulator of floor plate development. Cell 761: 103–115; 1994. doi:10.1016/0092–8674(94)90176-7.PubMedCrossRefGoogle Scholar
  38. Schoch K. G.; Lori A.; Burns K. A.; Eldred T.; Olsen J. C.; Randell S. H. A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am. J. Physiol., Lung Cell. Mol. Physiol. 2864: L631–642; 2004. doi:10.1152/ajplung.00112.2003.CrossRefGoogle Scholar
  39. Seta Y.; Seta C.; Barlow L. A. Notch-associated gene expression in embryonic and adult taste papillae and taste buds suggests a role in taste cell lineage decisions. J. Comp. Neurol. 4641: 49–61; 2003. doi:10.1002/cne.10787.PubMedCrossRefGoogle Scholar
  40. Steinert P. M.; Marekov L. N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J. Biol. Chem. 27030: 17702–17711; 1995. doi:10.1074/jbc.270.30.17702.PubMedCrossRefGoogle Scholar
  41. Stone L. M.; Tan S. S.; Tam P. P.; Finger T. E. Analysis of cell lineage relationships in taste buds. J. Neurosci. 2211: 4522–4529; 2002.PubMedGoogle Scholar
  42. Zhou Y.; Liu H. X.; Mistretta C. M. Bone morphogenetic proteins and noggin: inhibiting and inducing fungiform taste papilla development. Dev. Biol. 2971: 198–213; 2006. doi:10.1016/j.ydbio.2006.05.022.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • Xiaoyan Luo
    • 1
  • Tadashi Okubo
    • 2
  • Scott Randell
    • 3
  • Brigid L. M. Hogan
    • 1
  1. 1.Department of Cell BiologyDuke University Medical CenterDurhamUSA
  2. 2.Center for Integrative BioscienceNational Institute of Natural SciencesOkazakiJapan
  3. 3.Cystic Fibrosis/Pulmonary Research and Treatment CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations