A three-dimensional culture model of canine uterine glands

  • K. Stadler
  • J. Handler
  • S. Schoenkypl
  • I. WalterEmail author


The canine endometrium is frequently affected by severe alterations with unclear pathogenesis and is, therefore, an important subject of research in veterinary gynecology. Therefore, the aim of our study was to establish a three-dimensional in vitro system of the canine endometrium suitable for experimental approaches. For this reason, intact uterine glands were isolated from canine uteri and placed together with stromal cells on culture dishes coated with several extracellular matrix components (collagen I, IV, fibronectin, laminin, gelatin, Matrigel™) for up to 4 d to support differentiation of cultured cells. Immunohistochemical detection of laminin on freshly isolated glands showed a partial preservation of the basement membrane—an important factor for epithelial differentiation. Glandular structures were differentiated and polarized during culture time as shown by electron microscopy. Signs of degeneration and loss of cell–cell adhesions as seen occasionally on day 4 depended on the individual dog. In general, morphology was best preserved on Matrigel™ matrix. No significant changes of cultured glandular explants were observed concerning proliferation and steroid receptor (estrogen, progesterone) expression when compared with the original uterine tissue as assessed by immunohistochemical staining. Lectin histochemistry revealed comparable results for the in vivo endometrial glands and the cultured glandular explants during the whole culture period. This in vitro reconstitution of the canine endometrium is a promising tool to study the cyclic events in the normal endometrium as well as alterations in the affected uterus.


Endometrial glands Three-dimensional culture Dog 



The expert technical assistance of Sonja Dolezal and Magdalena Helmreich is greatly acknowledged. The work of Katharina Stadler was supported by the vonFircks scholarship at the University of Veterinary Medicine, Vienna, Austria.


  1. Bentin-Ley U.; Pedersen B.; Lindenberg S.; Larsen F.; Hamberger L.; Horn T. Isolation and culture of human endometrial cells in a three-dimensional culture system. J. Reprod. Fertil. 101: 327–332; 1994.PubMedCrossRefGoogle Scholar
  2. Benton G.; George J. G. Defining 3-D culture for investigating breast cancer progression. Bio. Sci. Technol. 1: 50–52; 2005.Google Scholar
  3. Bissell M. J.; Hall H. G.; Parry G. How does extracellular matrix direct gene expression? J. Theor. Biol. 99: 31–68; 1982.PubMedCrossRefGoogle Scholar
  4. Bissell M. J.; Radisky D. C.; Rizki A.; Weaver V. M.; Petersen O. W. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differentiation 70: 537–546; 2002.PubMedCrossRefGoogle Scholar
  5. Boudreau N.; Sympson C. J.; Werb Z.; Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 2675199: 891–893; 1995.PubMedCrossRefGoogle Scholar
  6. Classen-Linke I.; Alfer J.; Krusche M.; Beier H. M. Marker molecules of human endometrial differentiation can be hormonally regulated under in-vitro conditions as in-vivo. Human Reprod. Update 45: 539–549; 1998.CrossRefGoogle Scholar
  7. Classen-Linke I.; Kusche M.; Knauthe R.; Beier H. M. Establishment of a human endometrial cell culture system and characterization of its polarized hormone responsive epithelial cells. Cell Tissue Res. 287: 171–185; 1997.PubMedCrossRefGoogle Scholar
  8. De Cock H.; Vermeirsch H.; Ducatelle R.; De Schepper J. Immunohistochemical analysis of estrogen receptors in cystic–endometritis–pyometra complex in the bitch. Theriogenology 48: 1035–1047; 1997.PubMedCrossRefGoogle Scholar
  9. Debnath J.; Muthuswamy S. K.; Brugge J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268; 2003.PubMedCrossRefGoogle Scholar
  10. Dhaliwal G. K.; England G. C.; Noakes D. E. The influence of exogenous steroid hormones on steroid receptors, uterine histological structure and the bacterial flora of the normal bitch. Anim. Reprod. Sci. 56: 259–277; 1999.PubMedCrossRefGoogle Scholar
  11. Galabova-Kovacs G.; Walter I.; Aurich C.; Aurich J. E. Steroid receptors in canine endometrial cells can be regulated by estrogen and progesterone under in vitro conditions. Theriogenology 61: 963–976; 2004.PubMedCrossRefGoogle Scholar
  12. Johnston D. S.; Kustritz M. V.; Olson P. N. S. Canine and feline theriogenology. Saunders, London; 2001.Google Scholar
  13. Joraku A.; Sullivan C. A.; Yoo J.; Atala A. In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation 75: 318–324; 2007.PubMedCrossRefGoogle Scholar
  14. King S. S.; Young D. A.; Nequin L. G.; Carnevale E. M. Use of specific sugars to inhibit bacterial adherence to equine endometrium in vitro. Am. J. Vet. Res. 614: 446–449; 2000.PubMedCrossRefGoogle Scholar
  15. Kleinmann H.; Martin G. R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 15: 378–386; 2005.CrossRefGoogle Scholar
  16. Lee G. Y.; Kenny P. A.; Lee E. H.; Bissell M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4: 359–365; 2007.PubMedCrossRefGoogle Scholar
  17. Leitner M.; Aurich J. E.; Galabova G.; Aurich C.; Walter I. Lectin binding patterns in normal canine endometrium and in bitches with pyometra and cystic endometrial hyperplasia. Histol. Histopathol. 18: 787–795; 2003.PubMedGoogle Scholar
  18. Lelièvre S. A.; Weaver V. M.; Nickerson J. A.; Larabell C. A.; Bhaumik A.; Petersen O. W.; Bissell M. J. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc. Natl. Acad. Sci. U.S.A. 95: 14711–14716; 1998.PubMedCrossRefGoogle Scholar
  19. Lessey B. A.; Wahawisan R.; Gorell T. A. Hormonal regulation of cytoplasmic estrogen and progesterone receptors in the beagle uterus and oviduct. Mol. Cell. Endocrinol. 21: 171–180; 1981.PubMedCrossRefGoogle Scholar
  20. Pampaloni F.; Reynaud E. G.; Stelzer E. H. The third dimension bridges the gap between cell culture and live tissue. Nature Rev. Mol. Cell. Biol. 8: 839–845; 2007 DOI  10.1038/nrm2236.CrossRefGoogle Scholar
  21. Park D. W.; Choi D. S.; Ryu H. S.; Kwon Joo H. C.; Min C. K. A well-defined in vitro three-dimensional culture of human endometrium and its applicability to endometrial cancer invasion. Cancer Lett. 195: 185–192; 2003.PubMedGoogle Scholar
  22. Petersen O. W.; Ronnov-Jessen L.; Howlett A. R.; Bissell M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89: 9064–9068; 1992.PubMedCrossRefGoogle Scholar
  23. Smith F. Canine pyometra. Theriogenology 66: 610–612; 2006.PubMedCrossRefGoogle Scholar
  24. Sugawara J.; Fukaya T.; Murakami T.; Yoshida H.; Yajima A. Hepatocyte growth factor stimulates proliferation, migration, and lumen formation of human endometrial cells in vitro. Biol. Reprod. 57: 936–942; 1997.PubMedCrossRefGoogle Scholar
  25. Sympson C. J.; Talhouk R. S.; Alexander C. M.; Chin J. R.; Clift S. M.; Bissell M. J.; Werb Z. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell. Biol. 1253: 681–693; 1994.PubMedCrossRefGoogle Scholar
  26. Van Cruchten S.; Van den Broeck W.; D’Haeseler M.; Simoens P. Proliferation patterns in the canine endometrium during the oestrous cycle. Theriogenology 62: 631–641; 2004.PubMedCrossRefGoogle Scholar
  27. Vermeirsch H.; Simoens P.; Hellemans A.; Coryn M.; Lauwers H. Immunohistochemical detection of progesterone receptors in the canine uterus and their relation to sex steroid hormone levels. Theriogenology 53: 773–778; 2000.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • K. Stadler
    • 1
  • J. Handler
    • 2
    • 3
  • S. Schoenkypl
    • 4
  • I. Walter
    • 1
    Email author
  1. 1.Department of PathobiologyUniversity of Veterinary MedicineViennaAustria
  2. 2.Equine Reproduction Unit, Clinic for HorsesLudwig-Maximilians-UniversityMunichGermany
  3. 3.Clinic for Obstetrics, Gynecology, and AndrologyUniversity of Veterinary MedicineViennaAustria
  4. 4.Small Animal PracticeViennaAustria

Personalised recommendations