Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods

  • Gang Shen
  • Fang Shen
  • Zhuojin Shi
  • Weiguo Liu
  • Weiwei Hu
  • Xuesheng Zheng
  • Liang Wen
  • Xiaofeng Yang
Article

Abstract

The cancer stem cell (CSC) hypothesis has provided insights into the initiation and recurrence of brain tumor. Specific identification and targeted elimination of these CSCs within the tumor mass represents a promising therapeutic strategy for refractory brain tumors. In this study, we attempted to identify CSCs in the rat C6 glioma cell line by three different identification methods. It is interesting to note that single-cell clonal analysis showed most C6 cells are cancer stem-like cells with characteristics of self-renewal, multilineage differentiation potentials in vitro, and tumorigenic capacity in vivo. It is surprising to note that CD133 failed to identify the total cancer stem-like cell population in the C6 line, since both CD133 (+) and CD133 (−) C6 cells have cancer stem-like cell fractions. Moreover, Hoechst 33342 staining, which is used in flow cytometry to isolate the side population (SP), was found to be harmful to C6 cells. Therefore, CD133 (−) and non-SP C6 cells may also harbor cancer stem-like cells. These results imply the limitation of using current identification methods in C6 line and underscore the importance of defining the genetic and molecular basis of CSCs.

Keywords

Cancer stem cell C6 glioma cell line CD133 Side population 

Notes

Acknowledgments

We appreciate the technical expertise of Dr. Jiaping Peng and Dr. Qi Dong. This research was funded by the Natural Science Foundation of China (30772243). All authors declare that they have no competing financial interests.

References

  1. Al-Hajj M.; Becker M. W.; Wicha M.; Weissman I.; Clarke M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 141: 43–47; 2004.PubMedCrossRefGoogle Scholar
  2. Al-Hajj M.; Clarke M. F. Self-renewal and solid tumor stem cells. Oncogene 2343: 7274–7282; 2004.PubMedCrossRefGoogle Scholar
  3. Bao S.; Wu Q.; McLendon R. E.; Hao Y.; Shi Q.; Hjelmeland A. B.; Dewhirst M. W.; Bigner D. D.; Rich J. N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 4447120: 756–760; 2006.PubMedCrossRefGoogle Scholar
  4. Beier D.; Hau P.; Proescholdt M.; Lohmeier A.; Wischhusen J.; Oefner P. J.; Aigner L.; Brawanski A.; Bogdahn U.; Beier C. P. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 679: 4010–4015; 2007.PubMedCrossRefGoogle Scholar
  5. Benda P.; Lightbody J.; Sato G.; Levine L.; Sweet W. Differentiated rat glial cell strain in tissue culture. Science 161839: 370–371; 1968.PubMedCrossRefGoogle Scholar
  6. Brown M. D.; Gilmore P. E.; Hart C. A.; Samuel J. D.; Ramani V. A.; George N. J.; Clarke N. W. Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 6713: 1384–1396; 2007.PubMedCrossRefGoogle Scholar
  7. Brunner G.; Lang K.; Wolfe R. A.; McClure D. B.; Sato G. H. Selective cell culture of brain cells by serum-free, hormone-supplemented media: a comparative morphological study. Brain Res. 2544: 563–575; 1981.PubMedGoogle Scholar
  8. Chiba T.; Kita K.; Zheng Y. W.; Yokosuka O.; Saisho H.; Iwama A.; Nakauchi H.; Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 441: 240–251; 2006.PubMedCrossRefGoogle Scholar
  9. Fan X.; Salford L. G.; Widegren B. Glioma stem cells: evidence and limitation. Semin. Cancer Biol 173: 214–218; 2007.PubMedCrossRefGoogle Scholar
  10. Galli R.; Binda E.; Orfanelli U.; Cipelletti B.; Gritti A.; De Vitis S.; Fiocco R.; Foroni C.; Dimeco F.; Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 6419: 7011–7021; 2004.PubMedCrossRefGoogle Scholar
  11. Hadnagy A.; Gaboury L.; Beaulieu R.; Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp. Cell Res. 31219: 3701–3710; 2006.PubMedCrossRefGoogle Scholar
  12. Haraguchi N.; Inoue H.; Tanaka F.; Mimori K.; Utsunomiya T.; Sasaki A.; Mori M. Cancer stem cells in human gastrointestinal cancers. Hum. Cell 191: 24–29; 2006.PubMedCrossRefGoogle Scholar
  13. Hemmati H. D.; Nakano I.; Lazareff J. A.; Masterman-Smith M.; Geschwind D. H.; Bronner-Fraser M.; Kornblum H. I. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 10025: 15178–15183; 2003.PubMedCrossRefGoogle Scholar
  14. Hirschmann-Jax C.; Foster A. E.; Wulf G. G.; Nuchtern J. G.; Jax T. W.; Gobel U.; Goodell M. A.; Brenner M. K. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. USA 10139: 14228–14233; 2004.PubMedCrossRefGoogle Scholar
  15. Ho M. M.; Ng A. V.; Lam S.; Hung J. Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 6710: 4827–4833; 2007.PubMedCrossRefGoogle Scholar
  16. Ignatova T. N.; Kukekov V. G.; Laywell E. D.; Suslov O. N.; Vrionis F. D.; Steindler D. A. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 393: 193–206; 2002.PubMedCrossRefGoogle Scholar
  17. Jordan C. T. Cancer stem cell biology: from leukemia to solid tumors. Curr. Opin. Cell Biol. 166: 708–712; 2004.PubMedCrossRefGoogle Scholar
  18. Kabos P.; Ehtesham M.; Kabosova A.; Black K. L.; Yu J. S. Generation of neural progenitor cells from whole adult bone marrow. Exp. Neurol. 1782: 288–293; 2002.PubMedCrossRefGoogle Scholar
  19. Kang S. K.; Park J. B.; Cha S. H. Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem. Cells Dev. 153: 423–435; 2006.PubMedCrossRefGoogle Scholar
  20. Kondo T. Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 34–5: 245–250; 2007.PubMedGoogle Scholar
  21. Kondo T.; Setoguchi T.; Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl. Acad. Sci. USA 1013: 781–786; 2004.PubMedCrossRefGoogle Scholar
  22. Liu G.; Yuan X.; Zeng Z.; Tunici P.; Ng H.; Abdulkadir I. R.; Lu L.; Irvin D.; Black K. L.; Yu J. S. Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol. Cancer 5: 67; 2006.PubMedCrossRefGoogle Scholar
  23. Miki J.; Furusato B.; Li H.; Gu Y.; Takahashi H.; Egawa S.; Sesterhenn I. A.; McLeod D. G.; Srivastava S.; Rhim J. S. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 677: 3153–3161; 2007.PubMedCrossRefGoogle Scholar
  24. Olempska M.; Eisenach P. A.; Ammerpohl O.; Ungefroren H.; Fandrich F.; Kalthoff H. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat. Dis. Int. 61: 92–97; 2007.PubMedGoogle Scholar
  25. Oliver T. G.; Wechsler-Reya R. J. Getting at the root and stem of brain tumors. Neuron 426: 885–888; 2004.PubMedCrossRefGoogle Scholar
  26. Platet N.; Mayol J. F.; Berger F.; Herodin F.; Wion D. Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett. 5817: 1435–1440; 2007.PubMedCrossRefGoogle Scholar
  27. Setoguchi T.; Taga T.; Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle 34: 414–415; 2004.PubMedGoogle Scholar
  28. Shiras A.; Chettiar S. T.; Shepal V.; Rajendran G.; Prasad G. R.; Shastry P. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 256: 1478–1489; 2007.PubMedCrossRefGoogle Scholar
  29. Singh S. K.; Clarke I. D.; Terasaki M.; Bonn V. E.; Hawkins C.; Squire J.; Dirks P. B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 6318: 5821–5828; 2003.PubMedGoogle Scholar
  30. Singh S. K.; Hawkins C.; Clarke I. D.; Squire J. A.; Bayani J.; Hide T.; Henkelman R. M.; Cusimano M. D.; Dirks P. B. Identification of human brain tumour initiating cells. Nature 4327015: 396–401; 2004[see comment].PubMedCrossRefGoogle Scholar
  31. Wolfe R. A.; Sato G. H.; McClure D. B. Continuous culture of rat C6 glioma in serum-free medium. J. Cell Biol. 872 Pt 1: 434–441; 1980.PubMedCrossRefGoogle Scholar
  32. Yuan X.; Curtin J.; Xiong Y.; Liu G.; Waschsmann-Hogiu S.; Farkas D. L.; Black K. L.; Yu J. S. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2358: 9392–9400; 2004.PubMedCrossRefGoogle Scholar
  33. Zen Y.; Fujii T.; Yoshikawa S.; Takamura H.; Tani T.; Ohta T.; Nakanuma Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am. J. Pathol. 1705: 1750–1762; 2007.PubMedCrossRefGoogle Scholar
  34. Zhou L.; Wei X.; Cheng L.; Tian J.; Jiang J. J. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope 1173: 455–460; 2007.PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  • Gang Shen
    • 2
  • Fang Shen
    • 2
  • Zhuojin Shi
    • 2
  • Weiguo Liu
    • 2
  • Weiwei Hu
    • 2
  • Xuesheng Zheng
    • 1
  • Liang Wen
    • 1
  • Xiaofeng Yang
    • 1
  1. 1.Department of NeurosurgeryFirst Affiliated Hospital of Zhejiang University School of MedicineHangzhouPeople’s Republic of China
  2. 2.Institute of Brain MedicineZhejiang University School of MedicineHangzhouPeople’s Republic of China

Personalised recommendations