Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease

  • Zhiqing ZhangEmail author
  • Xiaofang Wang
  • Suping Wang


Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson’s disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients’ bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications.


Mesenchymal stem cells Bone marrow Parkinson’s disease Immunosuppression 



The authors thank all staff of department of Neurology of Dalian People Hospital for the donation and collection of bone marrow samples.


  1. Ahlskog J. E. Slowing Parkinson’s disease progression. Neurology 60: 381–389; 2003.PubMedGoogle Scholar
  2. Barberi T.; Klivenyi P.; Calingasan N. Y.; Lee H.; Kawamata H.; Loonam K. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21: 1200–1207; 2003.PubMedCrossRefGoogle Scholar
  3. Bartholomew A.; Sturgeon C.; Siatskas M.; Ferrer K.; McIntosh K.; Patil S. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42–48; 2002.PubMedCrossRefGoogle Scholar
  4. Brazelton T. R.; Rossi F. M.; Keshet G. I.; Blau H. M; From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290: 1775–1779; 2000.PubMedCrossRefGoogle Scholar
  5. Conway K. A.; Harper J. D. Lansbury PTAccelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4: 1318–1320; 1998.PubMedCrossRefGoogle Scholar
  6. Dauer W.; Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39: 889–909; 2003.PubMedCrossRefGoogle Scholar
  7. Deans R. J.; Moseley A. B. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875–84; 2000.PubMedCrossRefGoogle Scholar
  8. Dezawa M.; Kanno H.; Hoshino M.; Cho H.; Matsumoto N.; Itokazu Y. et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest. 113: 1701–1710; 2004.PubMedGoogle Scholar
  9. Di Nicola M.; Carlo-Stella C.; Magni M.; Milanesi M.; Longoni P. D.; Matteucci P. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843; 2002.PubMedCrossRefGoogle Scholar
  10. Dunnett S. B.; Bjorklund A; . Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399: A32–A39; 1999.PubMedCrossRefGoogle Scholar
  11. Fang B.; Liao L.; Shi M.; Yang S.; Zhao R. C. Multipotency of Flk1+CD34+progenitors derived from human fetal bone marrow. J. Lab. Clin. Med. 143: 230–240; 2005.CrossRefGoogle Scholar
  12. Horwitz E. M.; Prockop D. J.; Fitzpatrick L. A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5: 309–313; 1999.PubMedCrossRefGoogle Scholar
  13. Jankovic J. Levodopa strengths and weaknesses. Neurology 58: S19–S32; 2002.PubMedGoogle Scholar
  14. Jiang Y.; Jahagirdar B. N.; Reinhardt R. L. et al. Pluripotency of mesenchymal stem cell derived from adult marrow. Nature 418: 41–49; 2002.PubMedCrossRefGoogle Scholar
  15. Kasten P.; Vogel J.; Luginbühl R.; Niemeyer P.; Weiss S.; Schneider S. et al. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 183: 68–79; 2006.PubMedCrossRefGoogle Scholar
  16. Kawasaki H.; Mizuseki K.; Nishikawa S.; Kaneko S.; Kuwana Y.; Nakanishi S. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 3140; 2000.CrossRefGoogle Scholar
  17. Koc O.; Lazarus H. Mesenchymal stem cells heading to the clinic. Bone Marrow Transplant. 27: 235–239; 2001.PubMedCrossRefGoogle Scholar
  18. Kopen G. C.; Prockop D. J.; Phinney D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96: 10711–10716; 1999.PubMedCrossRefGoogle Scholar
  19. Krampera M.; Glennie S.; Dyson J.; Scott D.; Laylor R.; Simpson E. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729; 2003.PubMedCrossRefGoogle Scholar
  20. Le Blanc K.; Rasmusson I.; Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439–1441; 2004.PubMedCrossRefGoogle Scholar
  21. Lee S. H.; Lumelsky N.; Studer L.; Auerbach J. M.; McKay R. D. G. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol 18: 675–679; 2000.PubMedCrossRefGoogle Scholar
  22. Makino S.; Fukuda K.; Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697–705; 1999.PubMedCrossRefGoogle Scholar
  23. Mezey E.; Chandross K. J.; Harta G.; Maki R. A.; Mckercher S. R. Turning blood into brain; cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782; 2000.PubMedCrossRefGoogle Scholar
  24. Minguell J. J.; Conget P.; Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Braz. J. Med. Biol. Res. 33: 881–887; 2000.PubMedCrossRefGoogle Scholar
  25. Park S.; Lee K. S.; Lee Y. J.; Shin H. A.; Cho H. Y.; Wang K. C. et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett. 359: 99–103; 2004.PubMedCrossRefGoogle Scholar
  26. Perrier A. L.; Tabar V.; Barberi T.; Rubio M. E.; Bruses J.; Topf N. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101: 12543–12548; 2004.PubMedCrossRefGoogle Scholar
  27. Pittenger M. F.; Mackay A. M.; Beck S. C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.PubMedCrossRefGoogle Scholar
  28. Quinn N. P. Parkinson’s disease: clinical features. Baillieres Clin. Neurol. 6: 1–13; 1997.PubMedGoogle Scholar
  29. Reyes M.; Lund T.; Lenvik T. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625; 2001.PubMedCrossRefGoogle Scholar
  30. Sakurada K.; Ohshima-Sakurada M.; Palmer T. D.; Gage F. H. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126: 4017–4026; 1999.PubMedGoogle Scholar
  31. Sanchez-Ramos J.; Song S.; Cardozo-Pelaez F.; Hazzi C.; Stedeford T.; Willing A. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164: 247–256; 2000.PubMedCrossRefGoogle Scholar
  32. Seta Y.; Toyono T.; Takeda S.; Toyoshima K. Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. FEBS Lett. 444: 4346; 1999.CrossRefGoogle Scholar
  33. Tse W. T.; Pendleton J. D.; Beyer W. M.; Egalka M. C.; Guinan E. C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389–397; 2003.PubMedCrossRefGoogle Scholar
  34. Woodbury D; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61: 364–370; 2000.PubMedCrossRefGoogle Scholar
  35. Zhang H.; Huang Z.; Xu Y.; Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28: 104–112; 2006.PubMedCrossRefGoogle Scholar
  36. Zhao L. R.; Duan W. M.; Reyes M. et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174: 11–20; 2002.PubMedCrossRefGoogle Scholar
  37. Zheng J. L.; Shou J.; Guillemot F.; Kageyama R.; Gao W. Q. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127: 4551–4560; 2000.PubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2008

Authors and Affiliations

  1. 1.Department of NeurologyDalian Central HospitalDalianPeople’s Republic of China
  2. 2.Department of Hematology and Oncologythe Oncology Hospital of Tianjin Medical UniversityTianjinPeople’s Republic of China

Personalised recommendations