Bacillus thuringiensis insecticidal crylab toxin does not affect the membrane integrity of the mammalian intestinal epithelial cells: An in vitro study

  • Nobuaki ShimadaEmail author
  • Kazuhisa Miyamoto
  • Khozo Kanda
  • Hideo Murata
Articles Toxicology/Chemical Carcinogenesis


The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vescle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 μg/ml, no such membraneous changes were observed on the bovine, procine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell’s membrane integrity, thus exerting no subsequent adverse effects on the cell.

Key words

Cry1Ab toxin silkworm cattle pig human membrane potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, N.; Malhotra, P.; Bhatnagar, R. K. Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol. 68:4583–4592; 2002.PubMedCrossRefGoogle Scholar
  2. Aronson, A. I.; Shai, Y. Why Bacillis thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol. Lett. 195:1–8; 2001.PubMedCrossRefGoogle Scholar
  3. Baines, D.; Brownwright, A.; Schwartz, J. L. Estalishment of primary and continuous cultures of epithelial cells from larval lepidopteran midguts. J. Insect Physiol. 40:347–357; 1994.CrossRefGoogle Scholar
  4. Betz, F. S.; Hammond, B. G.; Fuchs, R. L. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32:156–173; 2000.PubMedCrossRefGoogle Scholar
  5. Bouclas, D.; Pendland, J. C. Principles of insect pathology, Boston/Dordrecht/London: Klirwer Academic Publishers; 1998.Google Scholar
  6. Chowdhury, E. H.; Shimada, N.; Murata, H., et al. Detection of Cry1Ab protein in gastrointestinal contents but not visceral organs of genetically modified Bt11-fed calves. Vet. Hum. Toxicol. 45:72–75; 2003.PubMedGoogle Scholar
  7. Crickmore, N.; Zeigler, D. R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D. H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807–813; 1998.PubMedGoogle Scholar
  8. Epps, D. E.; Wolfe, M. L.; Groppi, V. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1.3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) in model systems and cells. Chem. Phys. Lipids. 69:137–150; 1994.PubMedCrossRefGoogle Scholar
  9. Föllmann, W.; Weber, S.; Birkner, S. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes. Toxicol. In Vitro 14:435–445; 2000.PubMedCrossRefGoogle Scholar
  10. Hauser, H.; Howell, K.; Dawson, R. M.; Bowyer, D. E. Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim. Biophys. Acta 602:567–577; 1980.PubMedCrossRefGoogle Scholar
  11. Hofmann, C.; Lüthy, P.; Hütter, R.; Piska, V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173:85–91; 1988.PubMedCrossRefGoogle Scholar
  12. Knight, P. J.; Crickmore, N.; Ellar, D. J. The receptor for Bacillus thuringiensis Cry1A(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase. N. Mol. Microbiol. 11:429–436; 1994.CrossRefGoogle Scholar
  13. Kuiper, H. A.; Kleter, G. A.; Noteborn, H. P.; Kok, E. J. Assessement of the food safety issues related to genetically modified foods. Plant J. 27:503–528, 2001.PubMedCrossRefGoogle Scholar
  14. Lee, M. K.; Milne, R. E.; Ge, A. Z.; Dean, D. H. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis δ-endotoxin. J. Biol. Chem. 267:3115–3121; 1992.PubMedGoogle Scholar
  15. McClintock, J. T.; Schaffer, C. R.; Sjoblad, R. D. A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pestic. Sci. 45:95–105; 1995.CrossRefGoogle Scholar
  16. Okunuki, H.; Teshima, R.; Shigeta, T.; Sakushima, J.; Akiyama, H.; Goda, Y.; Toyoda, M.; Sawada, J. Increased digestibility of two products in genetically modified food (CP4-EPSPS and Cry1Ab) after preheating. Shokuhin Eiseigaku Zasshi. 43:68–73; 2002.PubMedCrossRefGoogle Scholar
  17. Plant, A. L.; Brigham-Burke, M.; Petrella, E. C.; O’Shannessy, D. J. Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal. Biochem. 226:342–348; 1995.PubMedCrossRefGoogle Scholar
  18. Sacchi, V. F.; Parenti, P.; Hanozet, G. M.; Giordana, B.; Lüthy, P.; Wolfersberger, M. G. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204:213–218; 1986CrossRefGoogle Scholar
  19. Schenepf, E.; Crickmore, N.; Rie, J. V.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806; 1998.Google Scholar
  20. Shimada, N.; Kim, Y. S.; Miyamoto, K.; Yoshioka, M.; Murata, H. Effects of Bacillus thuringiensis Cry1Ab toxin on mammalian cells. J. Vet. Med. Sci. 65:187–191; 2003.PubMedCrossRefGoogle Scholar
  21. Wolfersberger, M.; Lüthy, P.; Maurer, A.; Parenti, P.; Sacchi, V.; Giordana, B.; Hanozet, G. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86:301–308; 1987.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Nobuaki Shimada
    • 1
    Email author
  • Kazuhisa Miyamoto
    • 1
  • Khozo Kanda
    • 3
  • Hideo Murata
    • 2
  1. 1.National Institute of Animal HealthTsukuba, IbarakiJapan
  2. 2.National Institute of Agrobiological ScienceTsukuba, IbarakiJapan
  3. 3.Saga UniversitySaga, SagaJapan

Personalised recommendations