Molecular analysis and characterization of PrEc, commercially available prostate epithelial cells

  • Richard E. Sobel
  • Yuzhuo Wang
  • Marianne D. SadarEmail author
Articles Cell and Tissue Models


Adenocarcinoma of the prostate comprises 95% of all prostate cancer. Commercially available primary cultures of “Normal” prostate epithelial cells, PrECs, have been used as a convenient model to investigate neoplastic transformation. Here PrECs were characterized for the expression of lineage- and developmental-specific markers cytokeratin (CK) 8 and 18, p63, chromogranin A, TMEPAI, S100P, NKX 3.1, ANKH, and FN 1 as well as androgen receptor and prostatespecific antigen by Western blot and Northern blot analyses, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and quantitative real-time PCR. Immunohistochemical staining detected PrECs positive in varying degrees for p63, CK 8, and CK 18, with only the rare cell being positive for chromograpnin A. The PrECs also tested positive for p63 protein by Western blot analysis. RT-PCR with PrEC cDNA showed products for FN 1 and S100P but not for ANKH and androgen receptor or prostate-specific antigen. This profile of markers in PrEC cells is consistent with that expected for pubertal prostate epithelial cells.

Key words

prostate cancer endocrinology prostate epithelial cells prostate-specific antigen androgen receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amler, L. C.; Agus, D. B.; LeDuc, C., et al. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-RI. Cancer Res. 60:6134–6141; 2000.PubMedGoogle Scholar
  2. Averboukh, L.; Liang, P.; Kantoff, P. W.; Pardee, A. B. Regulation of S100P expression by androgen. Prostate 29:350–355; 1996.PubMedCrossRefGoogle Scholar
  3. Becker, T.; Cerke, V.; Kube, E.; Weber, K. S100P, a novel Ca(2+)-binding protein from human placenta: cDNA cloning, recombinant protein expression and Ca2+ binding properties. Eur. J. Biochem. 207:541–547; 1992.PubMedCrossRefGoogle Scholar
  4. Bieberich, C. J.; Fujita, K.; He, W. W.; Jay, G. Prostate-specific and androgendependent expression of a novel homeobox gene. J. Biol. Chem. 271:31779–31782; 1996.PubMedCrossRefGoogle Scholar
  5. Bonkhoff, H.; Remberger, K. Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch. A Pathol. Anat. Histopathol. 422:35–38; 1993.PubMedCrossRefGoogle Scholar
  6. Bonkhoff, H.; Stein, U.; Remberger, K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum. Pathol. 25:42–46; 1994.PubMedCrossRefGoogle Scholar
  7. Brinkmann, A. O.; Faber, P. W.; van Rooij, H. C., et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J. Steroid Biochem. 34:307–310; 1989.PubMedCrossRefGoogle Scholar
  8. Bruchovsky, N.; Rennie, P. S.; Vanson, A. Studies on the regulation of the concentration of androgens and androgen receptors in nuclei of prostatic cells. Biochim. Biophys. Acta 394:248–266; 1975.PubMedCrossRefGoogle Scholar
  9. Coffey, D. S.; Shimazaki, J.; Williams-Ashman, H. G. Polymerization of deoxyribonucleotides in relation to androgen-induced prostatic growth. Arch. Biochem. Biophys. 124:184–198; 1968.PubMedCrossRefGoogle Scholar
  10. Denmeade, S. R.; Isaacs, J. T. Programmed cell death (apoptosis) and cancer chemotherapy, Cancer Control 3:303–309; 1906.Google Scholar
  11. Denmeade, S. R.; Lin, X. S.; Isacs, J. T. Rote of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265; 1996.PubMedCrossRefGoogle Scholar
  12. DePrimo, S. E.; Diehn, M.; Nelson, J. B., et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol. 3:RESEARCH0032.1-0032.12; 2002.CrossRefGoogle Scholar
  13. Dhanasckaran, S. M.; Barrette, T. R.; Ghosh, D., et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826; 2001.CrossRefGoogle Scholar
  14. Garraway, L. A.; Lin, D.; Signoretti, S., et al. Intermediate basal cells of the prostate: in vitro and in vivo characterization. Proastate 55:206–218; 2003.CrossRefGoogle Scholar
  15. Hammacher, A.; Thompson, E. W.; Williams, E. D. Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int. J. Biochem. Cell Biol. 37:442–450; 2005.PubMedCrossRefGoogle Scholar
  16. Harper, M. E.; Glynne-Jones, E.; Goddard, L., et al. Expression of androgen receptor and growth factors in premalignant lessions of the prostate. J. Pathol. 186:169–177; 1998.PubMedCrossRefGoogle Scholar
  17. Hasenson, M.; Lundh, B.; Stege, R., et al. PAP and PSA in prostatic carcinoma cell lines and aspiration biopsies: relation to hormone sensitivity and to cytological grading. Prostate 14:83–90; 1989.PubMedCrossRefGoogle Scholar
  18. He, W. W.; Sciavolino, P. J.; Wing, J., et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43:69–77; 1997.PubMedCrossRefGoogle Scholar
  19. Hewish, D. R.; Burgoyne, L. A. The calcium dependent endonucleas activity of isolated nuclear preparations: relationships between its occurrence and the occurrence of other classes of enzymes found in nuclear preparations. Biochem. Biophys. Res. Commun. 52:475–481; 1973a.PubMedCrossRefGoogle Scholar
  20. Hewish, D. R.; Burgoyne, L. A. Chromatin sub-structure: the digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52:504–510; 1973b.PubMedCrossRefGoogle Scholar
  21. Horoszewicz, J. S., et al., The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37 p. 115–32.PubMedGoogle Scholar
  22. Isaacs, J. T. Control of cell proliferantion and cell deathin normal and neoplastic prostate. In: Rogers, C. H., et al., ed. Benign prostatic hyperplasia, Vol. II. NIH Publication No. 87-2881, Bethesada, MD: National Institutes of Health; 1987:85–94.Google Scholar
  23. Krijnen, J. L.; Janssen, P. J.; Ruizeveld de Winter, J. A., et al. Do neuroendocrine cells in human prostate cancer express androgen receptor? Histochemistry 100:393–398; 1993.PubMedCrossRefGoogle Scholar
  24. Muller, P. Y.; Janovjak, H.; Miserez, A. R.; Dobbie, Z. Processing of gene expression data generated, by quantitative real-time RT-PCR. Biotechniques 32:1372–1374, 1376, 1378–1379; 2002.PubMedGoogle Scholar
  25. Nagle, R. B.; Ahmann, F. R.; McDaniel, K. M., et al. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res, 47:281–286; 1987.PubMedGoogle Scholar
  26. Nakada, S. Y.; di Sant’Agnese, P. A.; Moynes, R. A., et al. The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 53:1967–1970; 1993.PubMedGoogle Scholar
  27. Peehl, D. M. Primary cell cultures as models of prostate cancer development. Endocr. Relat. Cancer 12:19–47; 2005.PubMedCrossRefGoogle Scholar
  28. Porkka, K. P.; Visakorpi, T. Detection of differentially expressed genes in prostate cancer by combining suppression subtractive hybridization and cDNA library array. J. Pathol. 193:73–79; 2001.PubMedCrossRefGoogle Scholar
  29. Prescott, J. L.; Blok, L.; Tindall, D. J. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 35:71–80; 1998.PubMedCrossRefGoogle Scholar
  30. Reagan-Shaw, S.; Ahmad, N. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 19:611–613; 2005.PubMedGoogle Scholar
  31. Skotheim, R. I.; Korkmaz, K. S.; Klokk, T. I., et al. NKX3.1 expression is lost in testicular germ cell tumors. Am. J. Pathol. 163:2149–2154; 2003.PubMedGoogle Scholar
  32. Sobel, R. E.; Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines-part I. J. Urol. 173:342–359; 2005a.PubMedCrossRefGoogle Scholar
  33. Sobel, R. E.; Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines-part 2. J. Urol. 173:360–372; 2005b.PubMedCrossRefGoogle Scholar
  34. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.PubMedCrossRefGoogle Scholar
  35. Ueda, T.; Bruchovsky, N.; Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277:7076–7085; 2002.PubMedCrossRefGoogle Scholar
  36. Visakorpi, T.; Hyytinen, E.; Koivisto, P., et al. In vivo amplification of the androgen receptor gene and progeression of human prostate cancer. Nat. Genet. 9:401–406; 1995.PubMedCrossRefGoogle Scholar
  37. Voelkel-Johnson, C. An antibody against DR4 (TRAIL-R1) in combination with doxorubicin selectively kills malignant but not normal prostate cells. Cancer Biol. Ther. 2:283–290; 2003.PubMedGoogle Scholar
  38. Wang, Y.; Hayward, S.; Cao, M., et al. Cell differentiation lineage in the prostate. Differentiation 68:270–279; 2001.PubMedCrossRefGoogle Scholar
  39. Xu, L. L.; Srikantan, V.; Sesterhenn, I. A., et al. Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J. Urol. 163:972–979; 2000.PubMedCrossRefGoogle Scholar
  40. Young, C. Y.; Montgomery, B. T.; Andrews, P. E., et al. Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP, Cancer Res. 51:3748–3752; 1991.PubMedGoogle Scholar
  41. Zhou, Z. X.; Lane, M. V.; Kemppainen, J. A., et al. Specificity of liganddependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9:208–218; 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Richard E. Sobel
    • 1
    • 2
  • Yuzhuo Wang
    • 1
    • 2
  • Marianne D. Sadar
    • 1
    • 2
    Email author
  1. 1.Michael Smith Genome SciencesBC Cancer AgencyVancouverCancada
  2. 2.Department of Cancer EndocrinologyBC Cancer AgencyVancouverCanada

Personalised recommendations