Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 gene expression: Effects of lif, serum-free medium, retinoic acid, and dbcAMP

Articles Cell Growth/Differentiation/Apoptosis

Summary

In this study we examined the interplay between serum, leukemia inhibitory factor (LIF), retinoic acid, and dibutyrl cyclic adenosine monophosphate (dbcAMP) in affecting IOUD2 embryonic stem cell self-renewal and differentiation as assessed by Oct4 expression, and cell proliferation as measured by total cell protein. Removal of LIF, reduced levels of fetal calf serum (FCS), and addition of retinoic acid all induced embryonic stem cell differentiation as measured by reduced Oct4 expression. Lower levels of retinoic acid (0.1–10 nM) promoted the formation of epithelial-like cells, whereas higher levels (100–10,000 nM) favored differentiation into fibroblastic-like cells. The effects of dbcAMP varied with the presence or absence of FCS and LIF and the concentration of dbcAMP. In FCS-containing media, a low level of dbcAMP (100 μM) increased self-renewal in the absence of LIF, but it had no effect in its presence. In contrast, at higher concentrations (1000 μM dbcAMP), regardless of LIF, differentiation was promoted. A similar effect of dbcAMP was seen in the presence of retinoic acid. In media without FCS but with serum replacement supplements, there was no effect of dbcAMP. This study shows that the Oct4 expression system of IOUD2 cells provides a novel, simple method for quantifying cellular differentiation.

Key words

mouse embryonic stem cells Oct4 retinoic acid dbcAMP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avilion, A.; Nicolis, S.; Pevny, L.; Perez, L.; Vivian, N.; Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17:126–140; 2003.PubMedCrossRefGoogle Scholar
  2. Beddington, R. S.; Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development. 105:733–737; 1989.PubMedGoogle Scholar
  3. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.PubMedCrossRefGoogle Scholar
  4. Bradley, A.; Evans, M.; Kaufman, M. H.; Robertson, E. Formation of germline chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 309:255–256; 1984.PubMedCrossRefGoogle Scholar
  5. Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 113:643–655; 2003.PubMedCrossRefGoogle Scholar
  6. Dani, C.; Chambers, I.; Johnstone, S., et al. Paracrine induction of stem cell renewal by LIF-deficient cells: a new ES cell regulatory pathway. Dev. Biol. 203:149–162; 1998.PubMedCrossRefGoogle Scholar
  7. Dani, C.; Smith, A.; Dessolin, S.; Leroy, P.; Staccini, L.; Villageois, P.; Darimont, C.; Ailhaud, G. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell. Sci. 110:1279–1285; 1997.PubMedGoogle Scholar
  8. Evans, M. Tissue culture of embryonic stem cells. Cell biology: a laboratory handbook. 1994:54–67.Google Scholar
  9. Fuhrmann, G.; Chung, A.; Jackson, K. J., et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell. 1:377–87; 2001.PubMedCrossRefGoogle Scholar
  10. Globus, R.; Strewler, G.; Nissenson, R. Up-regulation of adenylyl cyclase signaling and Gsa expression during differentiation of embryonic stem cells. Endocr. J. 2:419–427; 1994.Google Scholar
  11. Grover, A.; Adamson, E. Evidence for the existence of an early common biochemical pathway in the differentiation of F9 cells into visceral or parietal endoderm: modulation by cyclic AMP. Dev. Biol. 114:492–503; 1986.PubMedCrossRefGoogle Scholar
  12. Heath, J.; Smith, A. Regulatory factors of embryonic stem cells. J. Cell Sci. Suppl. 10:257–266; 1988.PubMedGoogle Scholar
  13. Maye, P.; Becker, S.; Kasameyer, E.; Byrd, N.; Grabel, L. Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech. Dev. 94:117–132; 2000.PubMedCrossRefGoogle Scholar
  14. Mountford, P.; Zevnik, B.; Düwel, A., et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA. 91:4303–437; 1994.PubMedCrossRefGoogle Scholar
  15. Mummery, C. L.; van den Eijnden-van Raaij, A. J.; Feijen, A.; Freund, E.; Hulskotte, E.; Schoorlemmer, J.; Kruijer, W. Expression of growth factors during the differentiation of embryonic stem cells in monolayer. Dev. Biol. 142:406–413; 1990.PubMedCrossRefGoogle Scholar
  16. Nichols, J.; Evans, E. P.; Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development. 110:1341–1348; 1990.PubMedGoogle Scholar
  17. Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12:2048–2060; 1998.PubMedGoogle Scholar
  18. Niwa, H.; Miyazaki, J.; Smith, A. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376; 2000.PubMedCrossRefGoogle Scholar
  19. Ogawa, K.; Matsui, H.; Ohtsuka, S.; Niwa, H. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells. 9:471–477; 2004.PubMedCrossRefGoogle Scholar
  20. Pelton, T.; Bettess, M.; Lake, J.; Rathjen, J.; Rathjen, P. Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro. Reprod. Fertil. Dev. 10:535–549; 1998.PubMedCrossRefGoogle Scholar
  21. Quinlan, L.; Faherty, S.; Kane, M. Phospholipase C and protein kinase C involvement in mouse embryonic stem-cell proliferation and apoptosis. Reproduction. 126:121–131; 2003.PubMedCrossRefGoogle Scholar
  22. Rathjen, P.; Nichols, J.; Toth, S.; Edwards, D.; Heath, J. K.; Smith, A. Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4:2308–2318; 1990.PubMedGoogle Scholar
  23. Smith, A.; Hooper, M. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121:1–9; 1987.PubMedCrossRefGoogle Scholar
  24. Smith, A.; Nichols, J.; Robertson, M.; Rathjen, P. Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev. Biol. 151:339–351; 1992.PubMedCrossRefGoogle Scholar
  25. Solter, D.; Knowles, B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA. 75:5565–9; 1978.PubMedCrossRefGoogle Scholar
  26. Strickland, S.; Mahdavi, V. The induction of differenitation in teratocarcinoma stem cells by retinoic acid. Cell. 15:393–403; 1978.PubMedCrossRefGoogle Scholar
  27. Suda, Y.; Suzuki, M.; Ikawa, Y.; Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133:197–201; 1987.PubMedCrossRefGoogle Scholar
  28. Tighe, A.; Gudas, L. Retinoic acid inhibits leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J. Cell. Physiol. 198:223–229; 2004.PubMedCrossRefGoogle Scholar
  29. van Inzen, W. G.; Peppelenbosch, M. P.; van den Brand, M. W.; Tertoolen, L. G.; de Laat, S. W. Neuronal differentiation of embryonic stem cells. Biochim. Biophys. Acta. 1312:21–26; 1996.PubMedCrossRefGoogle Scholar
  30. Viswanathan, S.; Benatar, T.; Mileikovsky, M.; Lauffenburger, D.; Nagy, A.; Zandstra, P. Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotech. Bioeng. 84:505–517; 2003.CrossRefGoogle Scholar
  31. Wiles, M.; Johansson, B. Embryonic stem cell development in a chemically defined medium. Exp. Cell Res. 247:241–248; 1999.PubMedCrossRefGoogle Scholar
  32. Williams, R.; Hilton, D.; Pease, S., et al. Myeloid, leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 336:684–687; 1988.PubMedCrossRefGoogle Scholar
  33. Wobus, A.; Rohwedel, J.; Maltsev, V.; Hescheler, J. In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells in specifically modulated by retinoic acid. Roux Arch. Dev. Biol. 204:36–45; 1994.CrossRefGoogle Scholar
  34. Ying, Q.; Smith, A. Defined condition for neural commitment and differentiation. In: Wassasmon, P. M.; Keller, G. M., ed. Methods in enzymology. Differentiation of Embryonic Stem Cells. London, UK. Elsevier; 2003:327–341.CrossRefGoogle Scholar
  35. Ying, Q. L.; Stavridis, M.; Griffiths, D.; Li, M.; Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21:183–186; 2003.PubMedCrossRefGoogle Scholar
  36. Yoshimizu, T.; Sugiyama, N.; De Felice, M., et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41:675–684; 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  1. 1.Department of PhysiologyNational University of IrelandGalwayIreland

Personalised recommendations