Establishment of three human breast epithelial cell lines derived from carriers of the 999del5 BRCA2 icelandic founder mutation

  • Agla J. Rubner Fridriksdottir
  • Thorarinn Gudjonsson
  • Thorhallur Halldorsson
  • Johannes Björnsson
  • Margret Steinarsdottir
  • Oskar Thor Johannsson
  • Helga M. Ögmundsdottir
Articles Cell and Tissue Models
  • 76 Downloads

Summary

Germ line mutations in BRCA1 and BRCA2 account for a large proportion of inherited breast and ovarian cancer. Both genes are involved in DNA repair by homologous recombination and are thought to play a vital role in maintaining genomic stability. A major drawback for long-term functional studies of BRCA in general and BRCA2 in particular has been a lack of representative human breast epithelial cell lines. In the present study, we have established three cell lines from two patients harboring the 999del5 germ line founder mutation in the BRCA2 gene. Primary cultures were established from cellular outgrowth of explanted tissue and subsequently transfected with a retroviral construct containing the HPV-16 E6 and E7 oncogenes. Paired cancer-derived and normal-derived cell lines were established from one patient referred to as BRCA2-999del5-2T and BRCA2-999del5-2N, respectively. In addition, one cell line was derived from cancer-associated normal tissue from another patient referred to as BRCA2-999del5-1N. All three cell lines showed characteristics of breast epithelial cells as evidenced by expression of breast epithelial specific cytokeratins. Cytogenetic analysis showed marked chromosomal instability with tetraploidy and frequent telomeric association. In conclusion, we have established three breast cpithelial cell lines from two patients carrying the BRCA2 Icelandic 999del5 founder mutation. These cell lines from the basis for further studies on carcinogenesis and malignant progression of breast cancer on a defined genetic background.

Key words

breast cancer cell lines immortalization BRCA2 mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D. W.; Freeman, M. L.; Holt, J. T. Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J. Natl. Cancer Inst. 90:978–985; 1998.PubMedCrossRefGoogle Scholar
  2. Adem, C.; Soderberg, C. L.; Hafner, K., et al. ERBB2, TBX2, RPS6KB1, and MYC alterations in breast tissues of BRCA1 and BRCA2 mutation carriers. Genes Chromosomes Cancer 41:1–11; 2004.PubMedCrossRefGoogle Scholar
  3. Annab, L. A.; Terry, L.; Cable, P. L.; Brady, J.; Stampfer, M. R.; Barrett, J. C.; Afshari, C. A. Establishment and characterization of a breast cell strain containing a BRCA1 185delAG mutation. Gynecol. Oncol. 77:121–128; 2000.PubMedCrossRefGoogle Scholar
  4. Arason, A.; Jonasdottir, A.; Barkardottir, R. B.; Bergthorsson, J. T.; Teare, M. D.; Easton, D. F.; Egilsson, V. A population study of mutations and LOH at breast cancer gene loci in tumours from sister pairs: two recurrent mutations seem to account for all BRCA1/BRCA2 linked breast cancer in Iceland. J. Med. Genet. 35:446–449; 1998.PubMedCrossRefGoogle Scholar
  5. Bartek, J.; Taylor-Papadimitriou, J.; Miller, N.; Millis, R. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int. J. Cancer 36:299–306; 1985.PubMedGoogle Scholar
  6. Briand, P.; Petersen, O. W.; Van Deurs, B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell. Dev. Biol. 23A:181–188; 1987.Google Scholar
  7. Chambers, J. A.; Harris, A. Expression of the cystic fibrosis gene and the major pancreatic mucin gene, MUC1, in human ductal epithelial cells. J. Cell Sci. 105(Pt. 2):417–422; 1993.PubMedGoogle Scholar
  8. Daniels, M. J.; Wang, Y.; Lee, M.; Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306:876–879; 2004.PubMedCrossRefGoogle Scholar
  9. Duensing, S.; Münger, K. The human papillomavirus type E6 and E7 onco-proteins independently induce numerical and structural chromosome instability. Cancer Res. 62:7075–7082; 2002.PubMedGoogle Scholar
  10. Fanjul, M.; Hollande, E. Morphogenesis of “duct-like” structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1). In Vitro Cell. Dev. Biol. 29A:574–584; 1993.Google Scholar
  11. Gasco, M.; Yulug, I. G.; Crook, T. TP53 mutations in familial breast cancer: functional aspects. Hum. Mutat. 21:301–306; 2003.PubMedCrossRefGoogle Scholar
  12. Gazdar, A. F.; Minna, J. D. NCI series of cell lines: an historical perspective. J. Cell. Biochem. Suppl. 24:1–11; 1996.PubMedCrossRefGoogle Scholar
  13. Goggins, M.; Schutte, M.; Lu, J., et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56:5360–5364; 1996.PubMedGoogle Scholar
  14. Gretarsdottir, S.; Thorlacius, S.; Valgardsdottir, R., et al. BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. Cancer Res. 58:859–862; 1998.PubMedGoogle Scholar
  15. Gudjonsson, T.; Villadsen, R.; Nielsen, H. L.; Ronnov-Jessen, L.; Bissell, M. J.; Petersen, O. W. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16:693–706; 2002.PubMedCrossRefGoogle Scholar
  16. Gudjonsson, T.; Villadsen, R.; Ronnov-Jessen, L.; Petersen, O. W. Immortalization protocols used in cell culture models of human breast morphogenesis. Cell. Mol. Life Sci. 61:2523–2534; 2004.PubMedCrossRefGoogle Scholar
  17. ISCN. An international system for human cytogenetic nomenclature. Mitelman, F. (Ed.). Basel: S. Karger, 1995.Google Scholar
  18. Johannsson, O.; Loman, N.; Moller, T.; Kristoffersson, U.; Borg, A.; Olsson, H. Incidence of malignant tumours in relatives of BRCA1 and BRCA2 germline mutation carriers. Eur. J. Cancer 35:1248–1257; 1999.PubMedCrossRefGoogle Scholar
  19. Johannsson, O. T.; Staff, S.; Vallon-Christerssen, J., et al. Characterization of a novel breast carcinoma xenograft and cell line derived from a BRCA1 germ-line mutation carrier. Lab. Invest. 83:387; 2003.PubMedGoogle Scholar
  20. King, M. C.; Marks, J. H.; Mandell, J. B.; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646; 2003.PubMedCrossRefGoogle Scholar
  21. Lacroix, M.; Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res. Treat. 83:249–289; 2004.PubMedCrossRefGoogle Scholar
  22. Marmorstein, L. Y.; Ouchi, T.; Aaronson, S. A. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl. Acad. Sci. USA 95:13869–13874; 1998.PubMedCrossRefGoogle Scholar
  23. Mikaelsdottir, E. K.; Valgeirsdottir, S.; Eyfjord, J. E.; Rafnar, T. The Icelandic founder mutation BRCA2 999del5: analysis of expression. Breast Cancer Res. 6:284–290; 2004.CrossRefGoogle Scholar
  24. Moynahan, M. E.; Pierce, A. J.; Jasin, M. BRCA2 is required for homologydirected repair of chromosomal breaks. Mol. Cell 7:263–272; 2001.PubMedCrossRefGoogle Scholar
  25. Narod, S. A.; Foulkes, W. D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 4:665–676; 2004.PubMedCrossRefGoogle Scholar
  26. Pechoux, C.; Gudjonsson, T.; Ronnov-Jessen, L.; Bissell, M. J.; Petersen, O. W. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev. Biol. 206:88–99; 1999.PubMedCrossRefGoogle Scholar
  27. Provencher, D. M.; Lounis, H.; Champoux, L., et al. Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell. Dev. Biol. 36A:357–361; 2000.CrossRefGoogle Scholar
  28. Samouelian, V.; Maugard, C. M.; Jolicoeur, M.; Bertrand, R.; Arcand, S. L.; Tonin, P. N.; Provencher, D. M.; Mes-Masson, A. M. Chemosensitivity and radiosensitivity profiles of four new human epithelial ovarian cancer cell lines exhibiting genetic alterations in BRCA2, TGFbeta-RII, KRAS2, TP53 and/or CDNK2A. Cancer Chemother. Pharmacol. 54:497–504; 2004.PubMedCrossRefGoogle Scholar
  29. Sigurdsson, S.; Thorlacius, S.; Tomasson, J.; Tryggvadottir, L.; Benediktsdottir, K.; Eyfjord, J. E.; Jonsson, E. BRCA2 mutation in Icelandic prostate cancer patients. J. Mol. Med. 75:758–761; 1997.PubMedCrossRefGoogle Scholar
  30. Spain, B. H.; Larson, C. J.; Shihabuddin, L. S.; Gage, F. H.; Verma, I. M. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc. Natl. Acad. Sci. USA 96:13920–13925; 1999.PubMedCrossRefGoogle Scholar
  31. Thorlacius, S.; Olafsdottir, G.; Tryggvadottir, L., et al. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat. Genet. 13:117–119; 1996.PubMedCrossRefGoogle Scholar
  32. Thorlacius, S.; Struewing, J. P.; Hartge, P., et al. Population-based study of risk of breast cancer in carriers of BRCA2 mutation. Lancet 352:1337–1339; 1998.PubMedCrossRefGoogle Scholar
  33. Tomlinson, G. E.; Chen, T. T.; Stastny, V. A., et al. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res. 58:3237–3242; 1998.PubMedGoogle Scholar
  34. Tonin, P. N.; Hudson, T. J.; Rodier, F., et al. Microarray analysis of gene expression mirrors the biology of an ovarian cancer model. Oncogene 20:6617–6626; 2001.PubMedCrossRefGoogle Scholar
  35. Venkitaraman, A. R. Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat. Rev. Cancer 4:266–276; 2004.PubMedCrossRefGoogle Scholar
  36. Warren, M.; Lord, C. J.; Masabanda, J.; Griffin, D.; Ashworth, A. Phenotypic effects of heterozygosity for a BRCA2 mutation. Hum. Mol. Genet. 12:2645–2656; 2003.PubMedCrossRefGoogle Scholar
  37. Wistuba, I. I.; Bryant, D.; Behrens, C.; Milchgrub, S.; Virmani, A. K.; Ashfaq, R.; Minna, J. D.; Gazdar, A. F. Comparison of features of human lung cancer cell lines and their corresponding tumors. Clin. Cancer Res. 5:991–1000; 1999.PubMedGoogle Scholar
  38. Yuan, S. S.; Lee, S. Y.; Chen, G.; Song, M.; Tomlinson, G. E.; Lee, E. Y. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–3551; 1999.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Agla J. Rubner Fridriksdottir
    • 1
    • 2
  • Thorarinn Gudjonsson
    • 1
    • 2
  • Thorhallur Halldorsson
    • 1
    • 3
  • Johannes Björnsson
    • 1
    • 3
  • Margret Steinarsdottir
    • 4
    • 5
  • Oskar Thor Johannsson
    • 4
    • 5
  • Helga M. Ögmundsdottir
    • 2
    • 2
  1. 1.Faculty of MedicineUniversity of IcelandReykjavikIceland
  2. 2.Molecular and Cell Biology Research LaboratoryIcelandic Cancer SocietyReykjavikIceland
  3. 3.Department of PathologyLandspitali University HospitalReykjavikIceland
  4. 4.Chromosome Laboratory, Department of PathologyLandspitali University HospitalReykjavikIceland
  5. 5.Department of OncologyLandspitali University HospitalReykjavikIceland

Personalised recommendations