Advertisement

Isolation and culture of the three vascular cell types from a small vein biopsy sample

  • Guillaume Grenier
  • Murielle Rémy-Zolghadri
  • Rina Guignard
  • François Bergeron
  • Raymond Labbé
  • François A. Auger
  • Lucie Germain
Articles Cell and Tissue Modesl

Summary

The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient’s morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel. This study describes such a cell-harvesting procedure from vein biopsy samples of canine and human origin. For this purpose, we combined preexisting mechanical methods for the isolation of the three vascular cell types: EC by scraping of the endothelium using a scalpel blade, vascular smooth muscle cells (VSMC), and perivascular fibroblasts according to the explant method. Once in culture, cells rapidly grew with the high level of enrichment. The morphological, phenotypical, and functional expected criteria were maintained: EC formed cobblestone colonies, expressed the von Willebrand factor, and incorporated acetylated low-density lipoprotein (LDL); VSMC were elongated and contracted when challenged by vasoactive agents; perivascular fibroblasts formed a mechanically resistant structure. Thus, we demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample. Their functional characteristics indicated that they were suitable for the cellularization of synthetic prosthesis or the reconstruction of functional multicellular autologous organs by tissue engineering.

Key words

mechanical harvesting endothelial cell smooth muscle cell perivascular fibroblast self-assembly approach functional tissue engineering 

References

  1. American Heart Association. Heart and stroke facts: statistical supplement. Available from: http://www.americanheart.org/statistics; update 2003.Google Scholar
  2. Auger, F. A.; Rémy-Zolghadri, M.; Grenier, G.; Germain, L. A truly new approach for tissue engineering: the LOEX self-assembly technique. Ernst Schering Res. Found. Workshop 35:73–88; 2002.PubMedGoogle Scholar
  3. Auger, F. A.; Rémy-Zolghadri, M.; Grenier, G.; Germain, L. The self-assembly approach for organ reconstruction by tissue-engineering. e-Biomed 1:75–86; 2000.CrossRefGoogle Scholar
  4. Bachetti, T.; Morbidelli, L. Endothelial cells in culture: a model for studying vascular functions. Pharmacol. Res. 42:9–19; 2000.PubMedCrossRefGoogle Scholar
  5. Bennett, M. R.; Evan, G. I.; Schwartz, S. M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J. Clin. Invest. 95:2266–2274; 1995.PubMedGoogle Scholar
  6. Braunwald, E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N. Engl. J. Med. 337:1360–1369; 1997.PubMedCrossRefGoogle Scholar
  7. Brewster, D. C. Prosthetic grafts. In: Vascular Surgery, Rutherford, R. B., ed. W. B. Saunders Co. Philadelphia; 1:492–521, 1995.Google Scholar
  8. Campbell, J. H.; Campbell, G. R. Culture techniques and their applications to studies of vascular smooth muscle. Clin. Sci. (Lond.) 85:501–513; 1993.Google Scholar
  9. Campbell, J. H.; Efendy, J. L.; Campbell, G. R. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ. Res. 85:1173–1178; 1999.PubMedGoogle Scholar
  10. Conrad-Lapostolle, V.; Bordenave, L.; Baquey, C. Optimization of use of UEA-1 magnetic beads for endothelial cell isolation. Cell. Biol. Toxicol. 12:189–197; 1996.PubMedCrossRefGoogle Scholar
  11. Desmoulières, A.; Rubbia-Brandt, L.; Abdiu, A.; Waltz, T.; Macieira-Coelho, A.; Gabbiani, G. α-Smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by γ-interferon. Exp. Cell. Res. 201:64–73; 1992.CrossRefGoogle Scholar
  12. Diglio, C. A.; Grammas, P.; Giacomelli, F.; Wiener, J. Angiogenesis in rat aorta ring explant cultures. Lab. Invest. 60:523–531; 1989.PubMedGoogle Scholar
  13. Dunzendorfer, S.; Bellmann, R.; Wiedermann, C. J. A simple way to obtain sufficient amounts of arterial endothelial cells from human umbilical cords [short communication.]. Cell. Biol. Int. 23:89–90; 1999.PubMedCrossRefGoogle Scholar
  14. Germain, L.; Rémy-Zolghadri, M.; Auger, F. Tissue engineering of the vascular system: from capillaries to larger blood vessels. Med. Biol. Eng. Comput. 38:232–240; 2000.PubMedCrossRefGoogle Scholar
  15. Gorfien, S.; Spector, A.; DeLuca, D.; Weiss, S. Growth and physiological functions of vascular endothelial cells in a new serum-free medium (SFM). Exp. Cell. Res. 206:291–301; 1993.PubMedCrossRefGoogle Scholar
  16. Heimli, H.; Kahler, H.; Endresen, M. J.; Henriksen, T.; Lyberg, T. A new method for isolation of smooth muscle cells from human umbilical cord arteries. Scand. J. Clin. Lab. Invest. 57:21–29; 1997.PubMedCrossRefGoogle Scholar
  17. Herring, M.; Baughman, S.; Glover, J. Endothelium develops on seeded human arterial prosthesis: a brief clinical note. J. Vasc. Surg. 2:727–730; 1985.PubMedCrossRefGoogle Scholar
  18. Herring, M. B.; Compton, R. S.; LeGrand, D. R.; Gardner, A. L.; Madison, D. L.; Glover, J. L. Endothelial seeding of polytetrafluoroethylene popliteal bypasses. A preliminary report. J. Vasc. Surg. 6:114–118; 1987.PubMedCrossRefGoogle Scholar
  19. Hewett, P. W.; Murray, J. C. Human lung microvessel endothelial cells: isolation, culture, and characterization. Microvasc. Res. 46:89–102; 1993.PubMedCrossRefGoogle Scholar
  20. Hewett, P. W.; Murray, J. C.; Price, E. A.; Watts, M. E.; Woodcock, M. Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue. In Vitro Cell. Dev. Biol. 29A:325–331; 1993.Google Scholar
  21. Hirai, J.; Matsuda, T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell. Transplant. 5:93–105; 1996.PubMedCrossRefGoogle Scholar
  22. Holifield, B.; Helgason, T.; Jemelka, S.; Taylor, A.; Navran, S.; Allen, J.; Seidel, C. Differentiated vascular myocytes: are they involved in neointimal formation? J. Clin. Invest. 97:814–825; 1996.PubMedGoogle Scholar
  23. Hudon, V.; Berthod, F.; Black, A. F.; Damour, O.; Germain, L.; Auger, F. A. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br. J. Dermatol., in press, 2003.Google Scholar
  24. Huynh, T.; Abraham, G.; Murray, J.; Brockbank, K.; Hagen, P. O.; Sullivan, S. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat. Biotechnol. 17:1083–1086; 1999.PubMedCrossRefGoogle Scholar
  25. Jaffe, E. A.; Nachman, R. L.; Becker, C. G.; Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.PubMedGoogle Scholar
  26. Kaushal, S.; Amiel, G. E.; Guleserian, K. J., et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7:1035–1040; 2001.PubMedCrossRefGoogle Scholar
  27. Lantz, G. C.; Badylak, S. F.; Hiles, M. C.; Coffey, A. C.; Geddes, L. A.; Kokini, K.; Sandusky, G. E.; Morff, R. J. Small intestinal submucosa as a vascular graft: a review. J. Invest. Surg. 6:297–310; 1993.PubMedCrossRefGoogle Scholar
  28. Laube, H. R.; Duwe, J.; Rutsch, W.; Konertz, W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 120:134–141; 2000.PubMedCrossRefGoogle Scholar
  29. L’Heureux, N.; Germain, L.; Labbe, R.; Auger, F. A. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17:499–509; 1993.PubMedCrossRefGoogle Scholar
  30. L’Heureux, N.; Paquet, S.; Labbe, R.; Germain, L.; Auger, F. A. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56; 1998.PubMedGoogle Scholar
  31. L’Heureux, N.; Stoclet, J. C.; Auger, F. A.; Lagaud, G. J.; Germain, L.; Andriantsitohaina, R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15:515–524; 2001.PubMedCrossRefGoogle Scholar
  32. Li, S.; Fan, Y. S.; Chow, L. H.; Van Den Diepstraten, C.; Van Der Veer, E.; Sims, S. M.; Pickering, J. G. Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery. Circ. Res. 89:517–525; 2001.PubMedGoogle Scholar
  33. Maïza, D. Artères coronaires. In: Actualités de chirurgie vasculaire. Le remplacement artériel: principes et applications. ed AERCV, Paris, pp. 377–391, 1992.Google Scholar
  34. Meinhart, J. G.; Deutsch, M.; Fischlein, T.; Howanietz, N.; Froschl, A.; Zilla, P. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac. Surg. 71:S327-S331; 2001.PubMedCrossRefGoogle Scholar
  35. Moulin, V.; Castilloux, G.; Auger, F. A.; Garrel, D.; O’Connor-McCourt, M. D.; Germain, L. Modulated response to cytokines of human wound healing myofibroblasts compared to dermal fibroblasts. Exp. Cell Res. 238:283–293; 1998.PubMedCrossRefGoogle Scholar
  36. Muller-Glauser, W.; Bay, U.; Lehmann, K. H.; Turina, M. An improved procedure for enzymatic harvesting of highly purified canine venous endothelial cells for experimental small diameter vascular prostheses. Ann. Vasc. Surg. 3:134–139; 1989.PubMedCrossRefGoogle Scholar
  37. Niklason, L. E.; Gao, J.; Abbott, W. M.; Hirschi, K. K.; Houser, S.; Marini, R.; Langer, R. Functional arteries grown in vitro. Science 284:489–493; 1999.PubMedCrossRefGoogle Scholar
  38. Noishiki, Y.; Yamane, Y.; Okoshi, T.; Tomizawa, Y.; Satoh, S. Choice, isolation, and preparation of cells for bioartificial vascular grafts. Artif. Organs 22:50–62; 1998.PubMedCrossRefGoogle Scholar
  39. Priebe, M.; Paulsen, F.; Jahnke, T.; Grimm, J.; Heller, M.; Muller-Hulsbeck, S. Mechanical brush-catheter abrasion method for the isolation and culture of human umbilical vein endothelial cells. First in vitro results. Rofo Forschr. Geb Rontgenstr. Neuen Bildgeb. Verfahr 173:955–958; 2001.CrossRefGoogle Scholar
  40. Ross, R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J. Cell. Biol. 50:172–186; 1971.PubMedCrossRefGoogle Scholar
  41. Sandusky, G. E.; Lantz, G. C.; Badylak, S. F. Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J. Surg. Res. 58:415–420; 1995.PubMedCrossRefGoogle Scholar
  42. Sipehia, R.; Liszkowski, M.; Lu, A. In vivo evaluation of ammonia plasma modified ePTFE grafts for small diameter blood vessels replacement. A preliminary report. J. Cardiovasc. Surg. (Torino) 42:537–542; 2001.Google Scholar
  43. Veith, F. J.; Gupta, S. K.; Ascer, E., et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vasc. Surg. 3:104–114; 1986.PubMedCrossRefGoogle Scholar
  44. Voyta, J. C.; Via, D. P.; Butterfield, C. E.; Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell. Biol. 99:2034–2040; 1984.PubMedCrossRefGoogle Scholar
  45. Wadsworth, R. M.; Berezin, I.; Crankshaw, J.; Kwan, C. Y.; Daniel, E. E. Morphology and contractile properties of smooth muscle cells isolated from the dog carotid artery. Blood Vessels 25:166–184; 1988.PubMedGoogle Scholar
  46. Wagner, D. D.; Olmsted, J. B.; Marder, V. J., Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J. Cell. Biol. 95:355–360; 1982.PubMedCrossRefGoogle Scholar
  47. Weinberg, C. B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400; 1986.PubMedCrossRefGoogle Scholar
  48. Yu, Z. K.; Wright, J. T.; Hausman, G. J. Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obes. Res. 5:9–15; 1997.PubMedGoogle Scholar
  49. Zilla, P.; von Oppell, U.; Deutsch, M. The endothelium: a key to the future. J. Cardiovasc. Surg. 8:32–60; 1993.Google Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Guillaume Grenier
    • 1
  • Murielle Rémy-Zolghadri
    • 1
  • Rina Guignard
    • 1
  • François Bergeron
    • 1
  • Raymond Labbé
    • 1
  • François A. Auger
    • 1
  • Lucie Germain
    • 1
  1. 1.Laboratoire d’Organogenèse Expérimentale (LOEX)Hôpital du Saint-Sacrement du CHAchemin Sainte-FoyCanada

Personalised recommendations