Advertisement

Sustainability Science

, Volume 14, Issue 1, pp 89–106 | Cite as

Simulation of natural capital and ecosystem services in a watershed in Northern Japan focusing on the future underuse of nature: by linking forest landscape model and social scenarios

  • Chihiro HagaEmail author
  • Takahiro Inoue
  • Wataru Hotta
  • Rei Shibata
  • Shizuka Hashimoto
  • Hiroko Kurokawa
  • Takashi Machimura
  • Takanori MatsuiEmail author
  • Junko Morimoto
  • Hideaki Shibata
Special Feature: Original Article Future Scenarios for Socio-Ecological Production Landscape and Seascape
  • 443 Downloads
Part of the following topical collections:
  1. Special Feature: Future Scenarios for Socio-Ecological Production Landscape and Seascape

Abstract

A quantitative scenario approach to compare the future state of natural capital and ecosystem services (ESs) plays a key role in facilitating decision-making for the sustainable management of landscapes. In Japan, the shrinking and aging population will likely lead to a situation of underuse of natural resources, resulting in rewilding of terrestrial ecosystems. This study conducted a quantitative scenario analysis of natural capital and ESs by linking model and social scenarios on a local scale. The case study area was the Bekanbeushi River Watershed in Northern Japan. LANDIS-II model (a forest landscape model) was used to simulate the vegetation dynamics in species composition, age structure, and biomass considering impacts of forest and pasture land management. Four “population distribution” and “capital preference” scenarios were translated into forest and pasture land management. The population distribution and capital preference assumptions resulted in different consequences for natural capital and ESs. The population distribution affected the spatial allocation of abandoned pasture land and level of isolation of managed pasture land. The capital preference assumptions largely affected the consequences for ESs. Finally, these simulation results demonstrated the capacity to feed quantitative information to the narrative scenarios. Our process-based approach provides insight into the relationships among social drivers, ecological processes, and the consequences that will affect natural capital and ESs, which can contribute to decision-making and sustainability design of regions, which may face issues associated with underuse in the future.

Keywords

LANDIS-II model Terrestrial ecosystem Depopulation Forestry practice Farmland abandonment 

Notes

Acknowledgements

This research was funded by the Environment Research and Technology Development Fund (S-15 ‘‘Predicting and Assessing Natural Capital and Ecosystem Services’’ (PANCES), Ministry of the Environment, Japan), Grants-in-Aid for Scientific Research (KAKENHI, 17H01516 ‘‘Adaptation to the Climate Change on Boreal Forest-Ecosystem Management for the Conservation of Ecosystem Resilience’’, Japan Society for the Promotion of Science, from FY2017 to FY2020), and Grant-in-Aid for JSPS Research Fellow (18J20266) from Japan Society for the Promotion of Science (JSPS).

Supplementary material

11625_2018_623_MOESM1_ESM.docx (272 kb)
Supplementary material 1 (DOCX 271 kb)

References

  1. Akkeshi town (2015) Wildlife damage prevention plan in Akkeshi town (in Japanese). https://www.akkeshi-town.jp/file/contents/287/5198/h280401chojukeikaku.pdf. Accessed 3 Jul 2018
  2. Akkeshi town (2016) Future creative comprehensive strategy of Akkeshi town. (in Japanese). https://www.akkeshi-town.jp/file/contents/1250/10061/2016futuresenryaku.pdf. Accessed 8 Feb 2018
  3. Akkeshi town (2017) Statistics of Akkeshi town 2016. (in Japanese). https://www.akkeshi-town.jp/file/contents/1678/14515/h28toukeisyo.pdf. Accessed 8 Feb 2018
  4. Biodiversity Center of Japan (2017) GIS data of 1:25,000 scale vegetation map. http://gis.biodic.go.jp/webgis/. Accessed 8 Feb 2018
  5. Brown DG, Verburg PH, Pontius RG, Lange MD (2013) Opportunities to improve impact, integration, and evaluation of land change models. Curr Opin Environ Sustain 5:452–457.  https://doi.org/10.1016/j.cosust.2013.07.012 CrossRefGoogle Scholar
  6. Cabinet Office, Government of Japan (2016) Annual Report on the Aging Society (summary) FY 2016. http://www8.cao.go.jp/kourei/english/annualreport/2016/2016pdf_e.html. Accessed 8 Feb 2018
  7. Carpenter SR, Mooney HA, Agard J et al (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. PNAS.  https://doi.org/10.1073/pnas.0808772106 Google Scholar
  8. CENTURY4 (2000) CENTURY parameterization workbook. https://www2.nrel.colostate.edu/projects/century/. Accessed 8 Feb 2018
  9. Conservation GIS-consortium Japan (2017) Road (line) which derived from the National Land Numerical Information download service. (in Japanese). http://cgisj.jp/. Accessed 8 Feb 2018
  10. Costanza R, Daly HE (1992) Natural capital and sustainable development. Conserv Biol 6(1):37–46.  https://doi.org/10.1046/j.1523-1739.1992.610037.x CrossRefGoogle Scholar
  11. Costanza R, de Groot R, Braat L et al (2017) Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst Serv 28:1–16.  https://doi.org/10.1016/j.ecoser.2017.09.008 CrossRefGoogle Scholar
  12. Dai E, Wu Z, Wang X, Fu H, Xi W, Pan T (2015) Progress and prospect of research on forest landscape model. J Geogr Sci 25:113–128.  https://doi.org/10.1007/s11442-015-1157-z CrossRefGoogle Scholar
  13. De Jager NR, Drohan PJ, Miranda BM, Sturtevant BR, Stout SL, Royo AA, Gustafson EJ, Romanski MC (2017) Simulating ungulate herbivory across forest landscapes: a browsing extension for LANDIS-II. Ecol Model 350:11–29.  https://doi.org/10.1016/j.ecolmodel.2017.01.014 CrossRefGoogle Scholar
  14. De Jong BH, Masera O, Olguín M, Martínez R (2007) Greenhouse gas mitigation potential of combining forest management and bioenergy substitution: a case study from Central Highlands of Michoacan, Mexico. For Ecol Manage 242:398–411.  https://doi.org/10.1016/j.foreco.2007.01.057 CrossRefGoogle Scholar
  15. Englund O, Berndes G, Cederberg C (2017) How to analyse ecosystem services in landscapes—a systematic review. Ecol Ind 73:492–504.  https://doi.org/10.1016/j.ecolind.2016.10.009 CrossRefGoogle Scholar
  16. ESGF-CoG (2017) CMIP-5. https://esgf-node.llnl.gov/search/cmip5/. Accessed 8 Feb 2018
  17. Estoque RC, Murayama Y (2012) Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Appl Geogr 35:316–326.  https://doi.org/10.1016/j.apgeog.2012.08.006 CrossRefGoogle Scholar
  18. FAO (2015) MOSAICC A modelling system for assessment of the agricultural impacts of climate change. http://www.fao.org/3/a-i5294e.pdf. Accessed 8 Feb 2018
  19. He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80:81–99.  https://doi.org/10.1890/0012-9658 CrossRefGoogle Scholar
  20. Hokkaido (2015) Hokkaido fertilizer recommendations 2015. (in Japanese). http://www.pref.hokkaido.lg.jp/ns/shs/10/clean/sehiguide2015_00.pdf. Accessed 8 Feb 2018
  21. Hokkaido (2017a) Regional forest plan in Kushiro Nemuro. (in Japanese). http://www.pref.hokkaido.lg.jp/sr/srk/chishinkei/h28_12kusinemu.pdf. Accessed 8 Feb 2018
  22. Hokkaido (2017b) Hokkaido forestry statistics. (in Japanese). http://www.pref.hokkaido.lg.jp/sr/sum/kcs/rin-toukei/rin-toukei-index.htm. Accessed 8 Feb 2018
  23. Hokkaido (2017c) Forest register for prefectural and private forest (in Japanese). http://www.pref.hokkaido.lg.jp/
  24. Hokkaido National Agricultural Experiment Station (1983) Soil survey of Kushiro sub prefecture and Nemuro city (in Japanese). http://www.naro.affrc.go.jp/harc/dosei/026087.html. Accessed 3 Jul 2018
  25. IPBES (2016) The methodological assessment report on scenarios and models of biodiversity and ecosystem services. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. http://www.ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf. Accessed 8 Feb 2018
  26. Japan Biodiversity Outlook Science Committee (2015) Report of comprehensive assessment of biodiversity and ecosystem services in Japan (Japan Biodiversity Outlook 2). Ministry of the Environment, TokyoGoogle Scholar
  27. Japan Meteorological Agency (2018) Past climate data. (in Japanese). http://www.data.jma.go.jp/gmd/risk/obsdl/index.php. Accessed 8 Feb 2018
  28. Japan Satoyama Satoumi Assessment (2010) Satoyama-satoumi ecosystems and human wellbeing: socio-ecological production landscapes of Japan (summary for decision makers). United Nations University, TokyoGoogle Scholar
  29. Laflower DM, Hurteau MD, Koch GW, North MP, Hungate BA (2016) Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA. Forest Ecol Manag 362:194–204.  https://doi.org/10.1016/j.foreco.2015.12.015 CrossRefGoogle Scholar
  30. Lucash MS, Scheller RM, Gustafson EJ, Sturtevant BR (2017) Spatial resilience of forested landscapes under climate change and management. Landscape Ecol 32:958–969.  https://doi.org/10.1007/s10980-017-0501-3 CrossRefGoogle Scholar
  31. Mallampalli VR, Mavrommati Thompson J, Duvenec M, Meyer S, Ligmann-Zielinska A, Druschke CG, Hychka K, Kenney MA, Kok K, Borsuk ME (2016) Methods for translating narrative scenarios into quantitative assessments of land use change. Environ Modell Softw 82:7–20.  https://doi.org/10.1016/j.envsoft.2016.04.011 CrossRefGoogle Scholar
  32. Matsui T, Haga C, Saito O, Hashimoto S (2018) Spatially explicit residential and working population assumptions for projecting and assessing natural capital and ecosystem services in Japan. Sustain Sci.  https://doi.org/10.1007/s11625-018-0605-y Google Scholar
  33. Mauerhofer V, Ichinose T, Blackwell BD, Willig MR, Flint CG, Krause MS, Penker M (2018) Underuse of social-ecological systems: a research agenda for addressing challenges to biocultural diversity. Land Use Policy 72:57–64.  https://doi.org/10.1016/j.landusepol.2017.12.003 CrossRefGoogle Scholar
  34. Middendorp RS, Pérez AJ, Molina A, Lambin EF (2016) The potential to restore native woody plant richness and composition in a reforesting landscape: a modeling approach in the Ecuadorian Andes. Landsc Ecol 31(7):1581–1599.  https://doi.org/10.1007/s10980-016-0340-7 CrossRefGoogle Scholar
  35. Millennium Ecosystem Assessment (MA) (2005) Ecosystem and human well-being—summary for decision makers. Island Press, Washington, DCGoogle Scholar
  36. Ministry of Agriculture, Forestry and Fisheries (2017a) Forest register for national forest (in Japanese). http://www.maff.go.jp/
  37. Ministry of Agriculture, Forestry and Fisheries (2017b) Agricultural production by municipalities (in Japanese). http://www.maff.go.jp/j/tokei/kouhyou/sityoson_sansyutu/index.html. Accessed 3 Jul 2018
  38. Ministry of Agriculture, Forestry and Fisheries (2018) Census of Agriculture and Forestry (in Japanese). http://www.maff.go.jp/j/tokei/census/afc/. Accessed 8 Feb 2018
  39. Ministry of Environment (2018) Connect and support forests, Satoyama, rivers and sea (in Japanese). http://www.env.go.jp/nature/morisatokawaumi/index.html. Accessed 8 Feb 2018
  40. Ministry of Land, Infrastructure, Transport and Tourism (MLIT) (2018) National land numerical information download service. http://nlftp.mlit.go.jp/ksj-e/index.html. Accessed 3 Jul 2018
  41. Mladenoff DJ, He HS (1999) Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 125–162Google Scholar
  42. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci 105:9495–9500.  https://doi.org/10.1073/pnas.0707823105 CrossRefGoogle Scholar
  43. Nakao K, Higa M, Tsuyama I, Lin CT, Sun ST, Lin JR, Chiou CR, Chen TY, Matsui T, Tanaka N (2014) Changes in the potential habitats of 10 dominant evergreen broad-leaved tree species in the Taiwan–Japan archipelago. Plant Ecol 215(6):639–650.  https://doi.org/10.1007/s11258-014-0329-8 CrossRefGoogle Scholar
  44. National Institute of Population and Social Security Research (NIPSSR) (2018) Regional population projections for Japan: 2015-2045 (in Japanese). http://www.ipss.go.jp/pp-shicyoson/j/shicyoson18/t-page.asp. Accessed 3 Jul 2018
  45. National Land Numerical Information download service (2017) Elevation, degree of slope 5th mesh data. http://nlftp.mlit.go.jp/ksj-e/index.html. Accessed 8 Feb 2018
  46. Nemuro Agriculture Improvement Promotion Center (2016) Pasture grass yield survey (in Japanese). http://www.nemuro.pref.hokkaido.lg.jp/ss/nkc/H28glass.pdf. Accessed 3 Jul 2018
  47. Ooba M, Fujii M, Hayashi K (2016) Geospatial distribution of ecosystem services and biomass energy potential in eastern Japan. J Cleaner Prod 130:35–44.  https://doi.org/10.1016/j.jclepro.2016.01.065 CrossRefGoogle Scholar
  48. PANCES (2016): Predicting and Assessing Natural Capital and Ecosystem Services (PANCES). http://pances.net/top_eng/wp-content/uploads/2017/07/PANCES_Leaflet_2016_EN.pdf. Accessed 8 Feb 2018
  49. Price JM, Silbernagel J, Nixon K, Swearingen A, Swaty R, Miller N (2016) Collaborative scenario modeling reveals potential advantages of blending strategies to achieve conservation goals in a working forest landscape. Landsc Ecol 31(5):1093–1115.  https://doi.org/10.1007/s10980-015-0321-2 CrossRefGoogle Scholar
  50. Saito O, Kamiyama C, Hashimoto S, Matsui T, Shoyama K, Kabaya K, Uetake T, Taki H, Ishikawa Y, Matsushita K, Yamane F, Hori J, Ariga T, Takeuchi K (2018) Co-design of national-scale future scenarios in Japan to predict and assess natural capital and ecosystem services. Sustain Sci.  https://doi.org/10.1007/s11625-018-0587-9 Google Scholar
  51. Scheller RM, Domingo JB (2018) LANDIS-II Biomass Harvest v3.2 user guide. Portland State University, Portland. http://www.landis-ii.org/extensions/biomass-harvest. Accessed 3 Jul 2018
  52. Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol Model 201(3–4):409–419.  https://doi.org/10.1016/j.ecolmodel.2006.10.009 CrossRefGoogle Scholar
  53. Scheller RM, Hua D, Bolstad PV, Birdsey RA, Mladenoff DJ (2011) The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in a Lake States mesic landscape. Ecol Model 222:144–153.  https://doi.org/10.1016/j.ecolmodel.2010.09.009 CrossRefGoogle Scholar
  54. Scheller RM, Lucash MS, Creutzburg M, Loudermilk EL (2018) LANDIS-II Net Ecosystem Carbon and Nitrogen (NECN) Succession v4.2 extension user guide. https://drive.google.com/file/d/0B6eUM6Se6MFBalNodG9rQ1htQlU/view. Accessed 8 Feb 2018
  55. Shibecha town (2017) Statistics of Shibecha 2016 (in Japanese). http://town.shibecha.hokkaido.jp/gyousei/kouhou_toukei/toukeishiryou/files/H29_All.pdf. Accessed 8 Feb 2018
  56. Shifley SR, He HS, Lischke H, Wang WJ, Jin W, Gustafson EJ, Thompson JR, Thompson FR III, Dijak WD, Yang J (2017) The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landsc Ecol 32(7):1307–1325.  https://doi.org/10.1007/s10980-017-0540-9 CrossRefGoogle Scholar
  57. Shoyama K, Yamagata Y (2014) Predicting land-use change for biodiversity conservation and climate-change mitigation and its effect on ecosystem services in a watershed in Japan. Ecosyst Serv 8:25–34.  https://doi.org/10.1016/j.ecoser.2014.02.004 CrossRefGoogle Scholar
  58. Shoyama K, Kamiyama C, Morimoto J, Ooba M, Okuro T (2017) A review of modeling approaches for ecosystem services assessment in the Asian region. Ecosyst Serv 26:316–328.  https://doi.org/10.1016/j.ecoser.2017.03.013 CrossRefGoogle Scholar
  59. Shoyama K, Matsui T, Hashimoto S et al (2018) Development of land-use scenarios using vegetation inventories in Japan. Sustain Sci.  https://doi.org/10.1007/s11625-018-0617-7 Google Scholar
  60. Sturtevant BR, Gustafson EJ, Li W, He HS (2004) Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol Model 180:153–174.  https://doi.org/10.1016/j.ecolmodel.2004.01.021 CrossRefGoogle Scholar
  61. Swearingen A, Price J, Silbernagel J, Swaty R, Miller N (2015) State-and-transition simulation modeling to compare outcomes of alternative management scenarios under two natural disturbance regimes in a forested landscape in northeastern Wisconsin, USA. AIMS Environ Sci 2(3):737–763.  https://doi.org/10.3934/environsci.2015.3.737 CrossRefGoogle Scholar
  62. Takeuchi K, Saito O, Hashimoto S, Managi S, Masahiro A, Yamakita T (2017) Call for papers for “Future scenarios for socio-ecological production landscape and seascape”. Sustain Sci 12:633–634.  https://doi.org/10.1007/s11625-017-0458-9 CrossRefGoogle Scholar
  63. Tallis SR, Ricketts HT, Guerry T, Wood AD, Chaplin-Kramer SA, Nelson R, Ennaanay E, Wolny D, Olwero S, Vigerstol N, Pennington K, Mendoza D, Aukema G, Foster J, Forrest J, Cameron J, Arkema D, Lonsdorf K, Kennedy E, Verutes C, Kim G, Guannel CK, Papenfus G, Toft M, Marsik J, Bernhardt M, Griffin J, Glowinski R, Chaumont K, Perelman N, Lacayo A, Mandle M, Hamel L, Vogl P, Rogers AL, Bierbower L, Denu W, Douglass J (2018) InVEST 3.5.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. https://naturalcapitalproject.stanford.edu/invest/. Accessed 17 Aug 2018
  64. Thompson JR, Lambert KF, Foster DR, Broadbent EN, Blumstein M, Almeyda Zambrano AM, Fan Y (2016a) The consequences of four land-use scenarios for forest ecosystems and the services they provide. Ecosphere 7(10):e01469.  https://doi.org/10.1002/ecs2.1469 CrossRefGoogle Scholar
  65. Thompson JR, Simons-Legaard E, Legaard K, Domingo JB (2016b) A LANDIS-II extension for incorporating land use and other disturbances. Environ Model Softw 75:202–205.  https://doi.org/10.1016/j.envsoft.2015.10.021 CrossRefGoogle Scholar
  66. United Nations (2015) Sustainable development goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 3 Jul 2018
  67. Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol 24:1167.  https://doi.org/10.1007/s10980-009-9355-7 CrossRefGoogle Scholar
  68. Wang F, Mladenoff DJ, Forrester JA, Blanco JA, Scheller RM, Peckham SD, Keough C, Lucash MS, Gower ST (2014) Multimodel simulations of forest harvesting effects on long-term productivity and CN cycling in aspen forests. Ecol Appl 24:1374–1389.  https://doi.org/10.1890/12-0888.1 CrossRefGoogle Scholar
  69. Xi W, Coulson RN, Birt AG, Shang ZB, Waldron JD, Lafon CW, Cairns DM, Tchakerian MD, Klepzig KD (2009) Review of forest landscape models: types, methods, development and applications. Acta Ecol Sin 29:69–78.  https://doi.org/10.1016/j.chnaes.2009.01.001 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Sustainable Energy and Environmental Engineering, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
  3. 3.School of AgricultureHokkaido UniversitySapporoJapan
  4. 4.Research Institute for Humanity and NatureKyotoJapan
  5. 5.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  6. 6.Department of Forest VegetationForestry and Forest Products Research InstituteTsukubaJapan
  7. 7.Graduate School of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations